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Abstract. The authors establish a pointwise characterization of Besov and Triebel–
Lizorkin spaces on spaces of homogeneous type via clarifying the relation between Hajłasz–
Sobolev spaces, Hajłasz–Besov and Hajłasz–Triebel–Lizorkin spaces, grand Besov and
Triebel–Lizorkin spaces, and Besov and Triebel–Lizorkin spaces. A major novelty of this
article is that all results presented get rid of both the dependence on the reverse doubling
condition of the measure and the metric condition of the quasi-metric under consideration.
Moreover, the pointwise characterization of the inhomogeneous version is new even when
the underlying space is an RD-space.

1. Introduction. It is well known that Besov and Triebel–Lizorkin
spaces provide a unified frame for the study of many function spaces and
indeed cover many well-known classical concrete function spaces such as
Lebesgue spaces, Sobolev spaces, potential spaces, (local) Hardy spaces, and
the space of functions with bounded mean oscillation. We refer the reader
to the monographs [5, 44, 45, 46, 47] for a comprehensive treatment of these
function spaces and their history. We also refer the reader to [61] for rela-
tions among Morrey spaces, Campanato spaces, and Besov–Triebel–Lizorkin
spaces, to [3,40] for some new progress of Besov and Triebel–Lizorkin spaces,
and to [6,7,8,9] for various characterizations and applications of Besov and
Triebel–Lizorkin spaces associated with operators.

In particular, fractional Sobolev spaces play an important major role in
many questions involving partial differential equations on Rn. It is known
that a theory of first order Sobolev spaces on doubling metric spaces has
been established based on both upper gradients [31, 41] and pointwise in-
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equalities [14]; see [15, 16] for a survey on this. These different approaches
result in the same function class if the underlying space supports a suitable
Poincaré inequality [35]. In the present article, we further investigate the
spaces introduced by Hajłasz [14] (see also [55] and Definition 2.10 below),
which are defined via pointwise inequalities.

On the other hand, as a generalization of Rn, spaces of homogeneous
type were introduced by Coifman and Weiss [10, 11] (see Definition 2.2
below), which provides a natural setting for the study of function spaces
and the boundedness of Calderón–Zygmund operators. We refer the reader
to [42, 43, 50, 51] for some very recent progress on function spaces on spaces
of homogeneous type. Function spaces and their applications on spaces of
homogeneous type, with some additional assumptions, have been extensively
investigated in many articles. For instance, the Ahlfors d-regular space is a
space of homogeneous type satisfying the following condition: there exists a
positive constant C such that, for any ball B(x, r) ⊂ X with center x and
radius r ∈ (0,diamX ),

C−1rd ≤ µ(B(x, r)) ≤ Crd;

here and hereafter, diamX := supx,y∈X d(x, y). Another case is the RD-
space (see [19,20,34] for instance), which is a doubling metric measure space
satisfying the following additional reverse doubling condition: there exist
positive constants C̃(µ) ∈ (0, 1] and κ ∈ (0, ω] such that, for any ball B(x, r)
with r ∈ (0, diamX/2) and λ ∈ [1, diamX/(2r)),

C̃(µ)λ
κµ(B(x, r)) ≤ µ(B(x, λr)).

Obviously, an RD-space is a generalization of an Ahlfors d-regular space.
We refer the reader to [60] for more equivalent characterizations of RD-
spaces.

Besov and Triebel–Lizorkin spaces on spaces of homogeneous type satis-
fying some additional assumptions were also studied. We refer the reader
to [21, 22, 56, 58, 59] for various characterizations of Besov and Triebel–
Lizorkin spaces on Ahlfors d-regular spaces, and to [52, 53, 54, 57] for some
applications. We also refer the reader to [20,38,60] for various characteriza-
tions of Besov and Triebel–Lizorkin spaces on RD-spaces. Moreover, Koskela
et al. [36,37] introduced Hajłasz–Besov and Hajłasz–Triebel–Lizorkin spaces
on RD-spaces. We refer the reader to [12, 27, 28, 29, 30] for various charac-
terizations and applications of Hajłasz–Besov and Hajłasz–Triebel–Lizorkin
spaces on a metric measure space satisfying the doubling property.

Recently, using the wavelet reproducing formulae of [18], Han et al. [17]
introduced Besov and Triebel–Lizorkin spaces on spaces of homogeneous
type and established several embedding theorems. On the other hand, Wang
et al. [48] also introduced Besov and Triebel–Lizorkin spaces on spaces of
homogeneous type, based on the Calderón reproducing formulae established
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in [24], and established the boundedness of Calderón–Zygmund operators
on these spaces as an application. Later, He et al. [25] obtained characteri-
zations of Besov and Triebel–Lizorkin spaces via wavelets, molecules, Lusin
area functions, and Littlewood–Paley g∗λ-functions. Moreover, He et al. [25]
showed that those two kinds of Besov and Triebel–Lizorkin spaces studied,
respectively, in [17] and [48] coincide. Then Wang et al. [49] established the
difference characterization of Besov and Triebel–Lizorkin spaces on spaces
of homogeneous type.

To complete the theory of Besov and Triebel–Lizorkin spaces on spaces
of homogeneous type, it is a natural question whether or not we can also
establish a pointwise characterization of Besov and Triebel–Lizorkin spaces
on spaces of homogeneous type. The main target of this article is to give an
affirmative answer to this question.

The organization of this article is as follows.
In Section 2, we first recall the concepts of both homogeneous Besov and

Triebel–Lizorkin spaces on spaces of homogeneous type introduced in [48],
and then introduce Hajłasz–Sobolev spaces and Hajłasz–Besov–Triebel–Li-
zorkin spaces on spaces of homogeneous type. Then we state the main result
of this article (Theorem 2.16).

In Section 3, we first introduce homogeneous grand Besov and Triebel–
Lizorkin spaces on spaces of homogeneous type. Then we investigate the re-
lation between homogeneous grand Besov and Triebel–Lizorkin spaces and
homogeneous Besov and Triebel–Lizorkin spaces (Theorem 3.3). Later, we
establish the equivalence between homogeneous Hajłasz–Besov–Triebel–Li-
zorkin spaces and homogeneous grand Besov and Triebel–Lizorkin spaces
(Theorem 3.10). To this end, we first establish a Poincaré type inequality
(Lemma 3.11). It should be mentioned that, in the proof of Lemma 3.11, the
constant A0 appearing in the quasi-triangle inequality (see Definition 2.1)
also brings some difficulty. That is why we need additional restrictions on
parameters involved therein. Moreover, all the proofs in Section 3 get rid of
the dependence on the reverse doubling assumption.

In Section 4,we establish the equivalence between inhomogeneousHajłasz–
Besov–Triebel–Lizorkin spaces and inhomogeneous Besov–Triebel–Lizorkin
spaces (Theorem 4.10). To this end, we first establish a new characterization
of inhomogeneous Besov–Triebel–Lizorkin spaces (Theorem 4.11).

Finally, let us make some conventions on notation. For any given p ∈
(0,∞], the Lebesgue space Lp(X ) is defined by setting

Lp(X ) := {f measurable on X : ∥f∥Lp(X ) <∞},
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where, for any measurable function f on X ,

∥f∥Lp(X ) :=


[ �
X
|f(x)|p dµ(x)

]1/p
if p ∈ (0,∞),

ess sup
x∈X

|f(x)| if p = ∞.

Throughout this article, we use A0 to denote the positive constant appearing
in the quasi-triangle inequality of d (see Definition 2.1), the parameter ω to
denote the upper dimension in Definition 2.2 [see (2.2)], and η to denote the
smoothness index of the exp-ATI in Definition 2.5. Moreover, δ is a small
positive number, for instance, δ ≤ (2A0)

−10, coming from the construction
of the dyadic cubes on X (see Lemma 2.4). For any given p ∈ [1,∞], we use
p′ to denote its conjugate index, that is, 1/p+1/p′ = 1. For any r ∈ R, r+ is
defined by setting r+ := max {0, r}. For any a, b ∈ R, let a ∧ b := min {a, b}
and a ∨ b := max {a, b}. The symbol C denotes a positive constant which is
independent of the main parameters involved, but may vary from line to line.
We use C(α,β,... ) to denote a positive constant depending on the indicated
parameters α, β, . . . . The symbol A ≲ B means that A ≤ CB for some
positive constant C, while A ∼ B means A ≲ B ≲ A. If f ≤ Cg and g = h
or g ≤ h, we then write f ≲ g ∼ h or f ≲ g ≲ h, rather than f ≲ g = h
or f ≲ g ≤ h. We let N := {1, 2, . . . } and Z+ := {0, 1, 2, . . . }. For any
r ∈ (0,∞) and x, y ∈ X with x ̸= y, define V (x, y) := µ(B(x, d(x, y))) and
Vr(x) := µ(B(x, r)). For any β, γ ∈ (0, η) and s ∈ (−(β ∧ γ), β ∧ γ), we
always let

(1.1) p(s, β ∧ γ) := max

{
ω

ω + (β ∧ γ)
,

ω

ω + (β ∧ γ) + s

}
,

where ω and η are, respectively, as in (2.2) and Definition 2.5. The operator
M always denotes the central Hardy–Littlewood maximal operator, which is
defined by setting, for any locally integrable function f on X and any x ∈ X ,

(1.2) M(f)(x) := sup
r∈(0,∞)

1

µ(B(x, r))

�

B(x,r)

|f(y)| dµ(y).

For any set E ⊂ X , we use 1E to denote its characteristic function, and for
any set J , we use #J to denote its cardinality.

2. BesovandTriebel–Lizorkin spaces andHajłasz–Sobolev spaces
on spaces of homogeneous type. In this section, we recall the concepts
of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and
introduce Hajłasz–Sobolev spaces on spaces of homogeneous type. Let us
begin with the concept of quasi-metric spaces.
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Definition 2.1. A quasi-metric space (X , d) is a non-empty set X
equipped with a quasi-metric d, that is, a non-negative function defined
on X × X satisfying, for any x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) there exists a constant A0 ∈ [1,∞), independent of x, y, z, such that

d(x, z) ≤ A0[d(x, y) + d(y, z)].

The ball B of X , centered at x0 ∈ X with radius r ∈ (0,∞), is defined
by setting

B := B(x0, r) := {x ∈ X : d(x, x0) < r}.

For any ball B and τ ∈ (0,∞), we denote by τB the ball with the same
center as that of B but of radius τ times that of B.

Definition 2.2. Let (X , d) be a quasi-metric space and µ a non-negative
measure on X . The triple (X , d, µ) is called a space of homogeneous type if
µ satisfies the following doubling condition: there exists a positive constant
C ∈ [1,∞) such that, for any ball B ⊂ X ,

(2.1) 0 < µ(2B) ≤ Cµ(B) <∞.

Let C(µ) := supB⊂X µ(2B)/µ(B). Then it is easy to show that C(µ) is
the smallest positive constant such that (2.1) holds true. The above doubling
condition implies that, for any ball B and any λ ∈ [1,∞),

(2.2) µ(λB) ≤ C(µ)λ
ωµ(B),

where ω := log2C(µ) is called the upper dimension of X . Note that ω ∈ (0,∞)
(see, for instance, [2, p. 72]). If A0 = 1, then (X , d, µ) is called a metric
measure space of homogeneous type, or simply a doubling metric measure
space.

Without loss of generality, we may make the following assumptions on
(X , d, µ). For any point x ∈ X , we assume that the balls {B(x, r)}r∈(0,∞)

form a basis of open neighborhoods of x. Moreover, we suppose that µ is
Borel regular, which means that open sets are measurable and every set
A ⊂ X is contained in a Borel set E satisfying µ(A) = µ(E). We also assume
µ(B(x, r)) ∈ (0,∞) and µ({x}) = 0 for any given x ∈ X and r ∈ (0,∞).

Now, we recall the concepts of both test functions and distributions on X ,
originally introduced in [20] (see also [19]).

Definition 2.3 (Test functions). Let x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1], and
γ ∈ (0,∞). For any x ∈ X , define

(2.3) Dγ(x1, x; r) :=
1

Vr(x1) + V (x1, x)

[
r

r + d(x1, x)

]γ
.
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A measurable function f on X is called a test function of type (x1, r, β, γ) if
there exists a positive constant C such that

(i) for any x ∈ X ,

(2.4) |f(x)| ≤ CDγ(x1, x; r);

(ii) for any x, y ∈ X satisfying d(x, y) ≤ (2A0)
−1[r + d(x1, x)],

(2.5) |f(x)− f(y)| ≤ C

[
d(x, y)

r + d(x1, x)

]β
Dγ(x1, x; r).

The set of all test functions of type (x1, r, β, γ) is denoted by G(x1, r, β, γ).
For any f ∈ G(x1, r, β, γ), its norm ∥f∥G(x1,r,β,γ) in G(x1, r, β, γ) is defined
by setting

∥f∥G(x1,r,β,γ) := inf{C ∈ (0,∞) : (2.4) and (2.5) hold true}.

The subspace G̊(x1, r, β, γ) is defined by setting

G̊(x1, r, β, γ) :=
{
f ∈ G(x1, r, β, γ) :

�

X
f(x) dµ(x) = 0

}
and is equipped with the norm ∥ · ∥G̊(x1,r,β,γ)

:= ∥ · ∥G(x1,r,β,γ).

Note that, for any fixed x1, x2 ∈ X and r1, r2 ∈ (0,∞), G(x1, r1, β, γ) =
G(x2, r2, β, γ) and G̊(x1, r1, β, γ) = G̊(x2, r2, β, γ) with equivalent norms, but
the positive equivalence constants may depend on x1, x2, r1, and r2. Thus,
for fixed x0 ∈ X and r0 = 1, we may denote G(x0, 1, β, γ) and G̊(x0, 1, β, γ)
simply by G(β, γ) and G̊(β, γ), respectively. Usually, the spaces G(β, γ) and
G̊(β, γ) are called the spaces of test functions on X .

Fix an ε ∈ (0, 1] and β, γ ∈ (0, ε]. Let Gε
0(β, γ) [resp., G̊ε

0(β, γ)] be
the completion of the set G(ε, ε) [resp., G̊(ε, ε)] in G(β, γ) [resp., G̊(β, γ)].
Furthermore, the norm of Gε

0(β, γ) [resp., G̊ε
0(β, γ)] is defined by setting

∥ · ∥Gε
0(β,γ)

:= ∥ · ∥G(β,γ) [resp., ∥ · ∥G̊ε
0(β,γ)

:= ∥ · ∥G(β,γ)]. The dual space

(Gε
0(β, γ))

′ [resp., (G̊ε
0(β, γ))

′] is defined to be the set of all continuous linear
functionals from Gε

0(β, γ) [resp., G̊ε
0(β, γ)] to C, equipped with the weak-∗

topology. The spaces (Gε
0(β, γ))

′ and (G̊ε
0(β, γ))

′ are called the spaces of dis-
tributions on X .

The following lemma, which comes from [32, Theorem 2.2], establishes
the dyadic cube system of (X , d, µ).

Lemma 2.4. Let constants 0 < c0 ≤ C0 < ∞ and δ ∈ (0, 1) be such that
12A3

0C0δ ≤ c0. Assume that a set of points, {zkα : k ∈ Z, α ∈ Ak} ⊂ X with
Ak for any k ∈ Z being a set of indices, has the following properties: for any
k ∈ Z,

d(zkα, z
k
β) ≥ c0δ

k if α ̸= β, and min
α∈Ak

d(x, zkα) < C0δ
k for any x ∈ X .
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Then there exists a family of sets, {Qk
α : k ∈ Z, α ∈ Ak}, satisfying

(i) for any k ∈ Z,
⋃

α∈Ak
Qk

α = X and {Qk
α : α ∈ Ak} consists of mutually

disjoint sets;
(ii) if l, k ∈ Z and k ≤ l, then, for any α ∈ Ak and β ∈ Al, either Ql

β ⊂ Qk
α

or Ql
β ∩Qk

α = ∅;
(iii) for any k ∈ Z and α ∈ Ak,

B(zkα, (3A
2
0)

−1c0δ
k) ⊂ Qk

α ⊂ B(zkα, 2A0C0δ
k).

Throughout this article, for any k ∈ Z, define

Gk := Ak+1 \ Ak and Yk := {zk+1
α }α∈Gk

=: {ykα}α∈Gk

and, for any x ∈ X , define

d(x,Yk) := inf
y∈Yk

d(x, y) and Vδk(x) := µ(B(x, δk)).

Now, we recall from [24] the concept of approximations of the identity
with exponential decay.

Definition 2.5. A sequence {Qk}k∈Z of bounded linear integral oper-
ators on L2(X ) is called an approximation of the identity with exponential
decay (for short, exp-ATI) if there exist constants C, ν ∈ (0,∞), a ∈ (0, 1],
and η ∈ (0, 1) such that, for any k ∈ Z, the kernel of the operator Qk,
a function on X × X , which is still denoted by Qk, satisfies the following
conditions:

(i) (the identity condition)
∑∞

k=−∞Qk = I in L2(X ), where I denotes the
identity operator on L2(X );

(ii) (the size condition) for any x, y ∈ X ,

|Qk(x, y)| ≤ C
1√

Vδk(x)Vδk(y)
Hk(x, y),

where

Hk(x, y) := exp

{
−ν

[
d(x, y)

δk

]a}
× exp

{
−ν

[
max {d(x,Yk), d(y,Yk)}

δk

]a}
;

(iii) (the regularity condition) for any x, x′, y ∈ X with d(x, x′) ≤ δk,

|Qk(x, y)−Qk(x
′, y)|+ |Qk(y, x)−Qk(y, x

′)|

≤ C

[
d(x, x′)

δk

]η 1√
Vδk(x)Vδk(y)

Hk(x, y);
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(iv) (the second difference regularity condition) for any x, x′, y, y′ ∈ X with
d(x, x′) ≤ δk and d(y, y′) ≤ δk,

|[Qk(x, y)−Qk(x
′, y)]− [Qk(x, y

′)−Qk(x
′, y′)]|

≤ C

[
d(x, x′)

δk

]η [d(y, y′)
δk

]η 1√
Vδk(x)Vδk(y)

Hk(x, y);

(v) (the cancellation condition) for any x, y ∈ X ,
�

X
Qk(x, y

′) dµ(y′) = 0 =
�

X
Qk(x

′, y) dµ(x′).

The existence of such an exp-ATI on spaces of homogeneous type is
guaranteed by [4, Theorem 7.1] with η as in [4, Theorem 3.1], which might
be very small (see also [24, Remark 2.8(i)]). However, if d is a metric, then η
can be taken arbitrarily close to 1 (see [33, Corollary 6.13]).

The following lemma states some basic properties of exp-ATIs. One can
find more details in [24, Remarks 2.8 and 2.9, and Proposition 2.10].

Lemma 2.6. Let {Qk}k∈Z be an exp-ATI and η ∈ (0, 1) be as in Defini-
tion 2.5. Then, for any given Γ ∈ (0,∞), there exists a positive constant C
such that, for any k ∈ Z, the kernel Qk has the following properties:

(i) for any x, y ∈ X ,

(2.6) |Qk(x, y)| ≤ CDΓ (x, y; δ
k),

where DΓ (x, y; δ
k) is as in (2.3) with γ replaced by Γ ;

(ii) for any x, x′, y ∈ X with d(x, x′) ≤ (2A0)
−1[δk + d(x, y)],

(2.7) |Qk(x, y)−Qk(x
′, y)|+ |Qk(y, x)−Qk(y, x

′)|

≤ C

[
d(x, x′)

δk + d(x, y)

]η
DΓ (x, y; δ

k);

(iii) for any x, x′, y, y′ ∈ X with d(x, x′) ≤ (2A0)
−2[δk + d(x, y)] and d(y, y′)

≤ (2A0)
−2[δk + d(x, y)],

|[Qk(x, y)−Qk(x
′, y)]− [Qk(x, y

′)−Qk(x
′, y′)]|

≤ C

[
d(x, x′)

δk + d(x, y)

]η[ d(y, y′)

δk + d(x, y)

]η
DΓ (x, y; δ

k).

Based on exp-ATIs, we now recall the concepts of Besov and Triebel–
Lizorkin spaces on spaces of homogeneous type; see [48, Definitions 3.1
and 5.1].

Definition 2.7. Let β, γ ∈ (0, η) with η as in Definition 2.5, and s ∈
(−(β ∧ γ), β ∧ γ). Let {Qk}k∈Z be an exp-ATI.
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(i) Let p ∈ (p(s, β ∧ γ),∞], with p(s, β ∧ γ) as in (1.1), and q ∈ (0,∞]. The
homogeneous Besov space Ḃs

p,q(X ) is defined by setting

Ḃs
p,q(X ) := {f ∈ (G̊η

0 (β, γ))
′ : ∥f∥Ḃs

p,q(X ) <∞},

where, for any f ∈ (G̊η
0 (β, γ))

′,

∥f∥Ḃs
p,q(X ) :=

[ ∞∑
k=−∞

δ−ksq∥Qk(f)∥qLp(X )

]1/q
with the usual modifications when q = ∞.

(ii) Let p ∈ (p(s, β ∧ γ),∞) and q ∈ (p(s, β ∧ γ),∞]. The homogeneous
Triebel–Lizorkin space Ḟ s

p,q(X ) is defined by setting

Ḟ s
p,q(X ) := {f ∈ (G̊η

0 (β, γ))
′ : ∥f∥Ḟ s

p,q(X ) <∞},

where, for any f ∈ (G̊η
0 (β, γ))

′,

∥f∥Ḟ s
p,q(X ) :=

∥∥∥[ ∞∑
k=−∞

δ−ksq|Qk(f)|q
]1/q∥∥∥

Lp(X )

with the usual modification when q = ∞.

The following definition introduces the concept of Triebel–Lizorkin spaces
with p = ∞; see [48, Definition 5.1].

Definition 2.8. Let β, γ ∈ (0, η), s ∈ (−(β ∧ γ), β ∧ γ), and let q ∈
(p(s, β ∧ γ),∞] with η as in Definition 2.5 and p(s, β ∧ γ) as in (1.1). Let
{Qk}k∈Z be an exp-ATI. For any k ∈ Z and α ∈ Ak, let Qk

α be as in
Lemma 2.4. Then the homogeneous Triebel–Lizorkin space Ḟ s

∞,q(X ) is defined
by setting

Ḟ s
∞,q(X ) := {f ∈ (G̊η

0 (β, γ))
′ : ∥f∥Ḟ s

∞,q(X ) <∞},

where, for any f ∈ (G̊η
0 (β, γ))

′,

∥f∥Ḟ s
∞,q(X ) := sup

l∈Z
sup
α∈Al

[
1

µ(Ql
α)

�

Ql
α

∞∑
k=l

δ−ksq|Qk(f)(x)|q dµ(x)
]1/q

with the usual modification when q = ∞.

Remark 2.9. (i) In Definition 2.5, we need diamX = ∞ to guarantee (v).
Observe that it was shown in [39, Lemma 5.1] (see also [4, Lemma 8.1]) that
diamX = ∞ implies µ(X ) = ∞. Therefore, diamX = ∞ if and only if
µ(X ) = ∞ under the assumptions of this article. Due to this, we always
assume that µ(X ) = ∞ in Sections 2 and 3.

(ii) In [48], Wang et al. proved that Ḃs
p,q(X ) and Ḟ s

p,q(X ) in Definition 2.7
are independent of the choices of β and γ as in Definition 2.7, and exp-ATIs
(see [48, Propositions 3.13 and 3.16] for more details). Moreover, it was also
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shown that Ḟ s
∞,q(X ) in Definition 2.8 is independent of the choices of β

and γ, and exp-ATIs (see [48, Propositions 5.4 and 5.5] for more details).

Now, we introduce the concepts of s-gradients and s-Hajłasz gradients on
spaces of homogeneous type (see, for instance, [37, Definition 1.1 and (2.1)]).

Definition 2.10. Let s ∈ (0,∞) and u be a measurable function on X .

(i) A non-negative function g is called an s-gradient of u if there exists a
set E ⊂ X with µ(E) = 0 such that, for any x, y ∈ X \ E,

|u(x)− u(y)| ≤ [d(x, y)]s[g(x) + g(y)].

Denote by Ds(u) the collection of all s-gradients of u.
(ii) A sequence of non-negative functions, {gk}k∈Z, is called an s-Hajłasz

gradient of u if there exists a set E ⊂ X with µ(E) = 0 such that, for
any k ∈ Z and x, y ∈ X \ E with δk+1 ≤ d(x, y) < δk,

|u(x)− u(y)| ≤ [d(x, y)]s[gk(x) + gk(y)].

Denote by Ds(u) the collection of all s-Hajłasz gradients of u.

Next, we introduce the concepts of homogeneous Hajłasz–Sobolev spaces,
Hajłasz–Triebel–Lizorkin spaces, and Hajłasz–Besov spaces (see, for instance,
[37, Definitions 1.2 and 2.1]).

Definition 2.11. Let s ∈ (0,∞).

(i) Let p ∈ (0,∞). The homogeneous Hajłasz–Sobolev space Ṁ s,p(X ) is
defined to be the set of all the measurable functions u on X such that

∥u∥Ṁs,p(X ) := inf
g∈Ds(u)

∥g∥Lp(X ) <∞.

(ii) Let p ∈ (0,∞) and q ∈ (0,∞]. The homogeneous Hajłasz–Triebel–
Lizorkin space Ṁ s

p,q(X ) is defined to be the set of all the measurable
functions u on X such that

∥u∥Ṁs
p,q(X ) := inf

{gk}k∈Z∈Ds(u)

∥∥∥( ∞∑
k=−∞

gqk

)1/q∥∥∥
Lp(X )

<∞

with the usual modification when q = ∞.
(iii) Let q ∈ (0,∞). The homogeneous Hajłasz–Triebel–Lizorkin space

Ṁ s
∞,q(X ) is defined to be the set of all the measurable functions u

on X such that
∥u∥Ṁs

∞,q(X )

:= inf
{gk}k∈Z∈Ds(u)

sup
k∈Z

sup
x∈X

{ ∞∑
j=k

1

µ(B(x, δk))

�

B(x,δk)

[gj(y)]
q dµ(y)

}1/q

<∞.
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(iv) The homogeneous Hajłasz–Triebel–Lizorkin space Ṁ s
∞,∞(X ) is defined

to be the set of all the measurable functions u on X such that

∥u∥Ṁs
∞,∞(X ) := inf

{gk}k∈Z∈Ds(u)

∥∥∥sup
k∈Z

gk

∥∥∥
L∞(X )

<∞.

(v) Let p, q ∈ (0,∞]. The homogeneous Hajłasz–Besov space Ṅ s
p,q(X ) is

defined to be the set of all the measurable functions u on X such that

∥u∥Ṅs
p,q(X ) := inf

{gk}k∈Z∈Ds(u)

[ ∞∑
k=−∞

∥gk∥qLp(X )

]1/q
<∞

with the usual modification when q = ∞.

From Definition 2.11, it is easy to get the following conclusion. We omit
the details.

Proposition 2.12. Let s ∈ (0,∞) and p ∈ (0,∞]. Then Ṁ s
p,∞(X ) =

Ṁ s,p(X ).

Next, we recall the concept of weak lower bounds (see, for instance, [17,
Definition 1.1], [49, Definition 4.4], and [1, (2) or (3)]).

Definition 2.13. Let (X , d, µ) be a space of homogeneous type with
upper dimension ω as in (2.2). The measure µ is said to have a weak lower
bound Q with Q ∈ (0, ω] if there exist a positive constant C and a point
x0 ∈ X such that, for any r ∈ [1,∞),

µ(B(x0, r)) ≥ CrQ.

Remark 2.14. We point out that, in [49, Definition 4.4], µ is said to
have a lower bound Q with Q ∈ (0, ω] if there exists a positive constant C
such that, for any x ∈ X and r ∈ (0,∞), µ(B(x, r)) ≥ CrQ. That is why we
call it a weak lower bound in Definition 2.13.

As the next result illustrates, it follows from the doubling property of
the measure that the weak lower bound and the lower bound conditions are
equivalent when Q = ω, where ω is as in (2.2).

Proposition 2.15. With ω as in (2.2), the measure µ has a weak lower
bound Q = ω if and only if it has a lower bound Q = ω.

Proof. Clearly, the lower bound condition implies the weak lower bound
condition. Now, we show the converse. To this end, suppose that the measure
µ has a weak lower bound Q = ω for some fixed x0 ∈ X . Fix x ∈ X and
r ∈ (0,∞). Next, choose an R ∈ [1,∞) large enough so that R > r and
B(x, r) ⊂ B(x0, R). Consider the smallest k ∈ N such that 2A0R ≤ (2A0)

kr,
where A0 ∈ [1,∞) is the constant in the quasi-triangle inequality. Note
that k ≥ 1 because r < R, and hence (2A0)

k > 1. Also, this choice of k
ensures that (2A0)

kr ≤ (2A0)
2R, which further implies that B(x0, R) ⊂
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B(x, (2A0)
kr). Using this, the weak lower bound Q = ω for the ball B(x0, R),

the doubling condition in (2.1), and (2A0)
kr ≤ (2A0)

2R, we further conclude
that

Rω ≲ µ(B(x0, R)) ≲ µ(B(x, (2A0)
kr))

≲ (2A0)
kωµ(B(x, r)) ≲ (2A0)

2ω

(
R

r

)ω

µ(B(x, r)),

from which it follows that µ(B(x, r)) ≳ rω. Thus, µ has a lower bound
Q = ω, as wanted.

Now, we can state our main results.

Theorem 2.16. Let β, γ ∈ (0, η) with η as in Definition 2.5, s ∈ (0, β∧γ),
p, q be as in Definition 2.7, and ω as in (2.2). Assume that the measure µ
of X has a weak lower bound Q = ω.

(i) If p ∈ (ω/(ω + s),∞) and q ∈ (ω/(ω + s),∞], then Ṁ s
p,q(X ) = Ḟ s

p,q(X ).
(ii) If p ∈ (ω/(ω + s),∞] and q ∈ (0,∞], then Ṅ s

p,q(X ) = Ḃs
p,q(X ).

3. Relations to homogeneous grand Besov and Triebel–Lizorkin
spaces. Before we prove Theorem 2.16, we need to introduce the concepts of
other important spaces, namely, the homogeneous grand Besov and Triebel–
Lizorkin spaces on spaces of homogeneous type.

Definition 3.1. Let η be as in Definition 2.5, s ∈ (−η, η), β, γ ∈ (0, η),
and q ∈ (0,∞]. For any k ∈ Z and x ∈ X , define

Fk(x) := {ϕ ∈ G̊η
0 (β, γ) : ∥ϕ∥G̊(x,δk,β,γ) ≤ 1}.

(i) For any p ∈ (0,∞], the homogeneous grand Besov space AḂs
p,q(X ) is

defined by setting

AḂs
p,q(X ) := {f ∈ (G̊η

0 (β, γ))
′ : ∥f∥AḂs

p,q(X ) <∞},

where, for any f ∈ (G̊η
0 (β, γ))

′,

∥f∥AḂs
p,q(X ) :=

[ ∞∑
k=−∞

δ−ksq
∥∥∥ sup
ϕ∈Fk(·)

|⟨f, ϕ⟩|
∥∥∥q
Lp(X )

]1/q
with the usual modification when q = ∞.

(ii) For any p ∈ (0,∞), the homogeneous grand Triebel–Lizorkin space
AḞ s

p,q(X ) is defined by setting

AḞ s
p,q(X ) := {f ∈ (G̊η

0 (β, γ))
′ : ∥f∥AḞ s

p,q(X ) <∞},
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where, for any f ∈ (G̊η
0 (β, γ))

′,

∥f∥AḞ s
p,q(X ) :=

∥∥∥[ ∞∑
k=−∞

δ−ksq sup
ϕ∈Fk(·)

|⟨f, ϕ⟩|q
]1/q∥∥∥

Lp(X )

with the usual modification when q = ∞.
(iii) The homogeneous grand Triebel–Lizorkin space AḞ s

∞,q(X ) is defined by
setting

AḞ s
∞,q(X ) := {f ∈ (G̊η

0 (β, γ))
′ : ∥f∥AḞ s

∞,q(X ) <∞},

where, for any f ∈ (G̊η
0 (β, γ))

′,

∥f∥AḞ s
∞,q(X )

:= sup
l∈Z

sup
α∈Al

[
1

µ(Ql
α)

�

Ql
α

∞∑
k=l

δ−ksq sup
ϕ∈Fk(x)

|⟨f, ϕ⟩|q dµ(x)
]1/q

with the usual modification when q = ∞.

Remark 3.2. Let {Qk}k∈Z be an exp-ATI. By (2.6) and (2.7), it is easy
to see that, for any k ∈ Z and x ∈ X , Qk(x, ·) ∈ Fk(x).

We now establish the relation between homogeneous Besov and Triebel–
Lizorkin spaces and homogeneous grand Besov and Triebel–Lizorkin spaces.

Theorem 3.3. Let β, γ ∈ (0, η) with η as in Definition 2.5, and s ∈
(−(β ∧ γ), β ∧ γ).
(i) If p and q are as in Definition 2.7(ii), then Ḟ s

p,q(X ) = AḞ s
p,q(X ).

(ii) If p and q are as in Definition 2.7(i), then Ḃs
p,q(X ) = AḂs

p,q(X ).

To prove Theorem 3.3, we need several lemmas. Let us begin by recalling
the following very basic inequality.

Lemma 3.4. For any θ ∈ (0, 1] and {aj}j∈N ⊂ C,

(3.1)
( ∞∑
j=1

|aj |
)θ

≤
∞∑
j=1

|aj |θ.

The next lemma contains several basic and very useful estimates re-
lated to d and µ on X . One can find the details in [20, Lemma 2.1] or [24,
Lemma 2.4].

Lemma 3.5. Let β, γ ∈ (0,∞).

(i) For any x, y ∈ X and r ∈ (0,∞), V (x, y) ∼ V (y, x) and

Vr(x) + Vr(y) + V (x, y) ∼ Vr(x) + V (x, y) ∼ Vr(y) + V (x, y)

∼ µ(B(x, r + d(x, y))),
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and moreover, if d(x, y) ≤ r, then Vr(x) ∼ Vr(y). Here the positive
equivalence constants are independent of x, y, and r.

(ii) There exists a positive constant C such that, for any x1 ∈ X and r ∈
(0,∞), �

X
Dγ(x1, y; r) dµ(y) ≤ C,

where Dγ(x1, y; r) is as in (2.3).

The following homogeneous discrete Calderón reproducing formula was
obtained in [24, Theorem 5.11]. Let j0 ∈ N be sufficiently large such that
δj0 ≤ (2A0)

−5C−1
0 . Based on Lemma 2.4, for any k ∈ Z and α ∈ Ak, let

N(k, α) := {τ ∈ Ak+j0 : Qk+j0
τ ⊂ Qk

α}
and N(k, α) := #N(k, α). From Lemma 2.4, it follows that N(k, α) ≲ δ−j0ω

with the implicit positive constant independent of both k and α, and that⋃
τ∈N(k,α)Q

k+j0
τ = Qk

α. We rearrange the set {Qk+j0
τ : τ ∈ N(k, α)} as

{Qk,m
α }N(k,α)

m=1 . Also, denote by yk,mα an arbitrary point in Qk,m
α and by zk,mα

the “center” of Qk,m
α .

Lemma 3.6. Let {Qk}∞k=−∞ be an exp-ATI and β, γ ∈ (0, η) with η as
in Definition 2.5. For any k ∈ Z, α ∈ Ak, and m ∈ {1, . . . , N(k, α)}, sup-
pose that yk,mα is an arbitrary point in Qk,m

α . Then there exists a sequence
{Q̃k}∞k=−∞ of bounded linear integral operators on L2(X ) such that, for any
f ∈ (G̊η

0 (β, γ))
′,

f(·) =
∞∑

k=−∞

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )Q̃k(·, yk,mα )Qkf(y

k,m
α )

in (G̊η
0 (β, γ))

′. Moreover, there exists a positive constant C, independent of
the choices of both yk,mα , with k ∈ Z, α ∈ Ak, and m ∈ {1, . . . , N(k, α)},
and f , such that, for any k ∈ Z, the kernel of Q̃k satisfies

(i) for any x, y ∈ X ,

(3.2) |Q̃k(x, y)| ≤ CDγ(x, y; δ
k),

where Dγ(x, y; δ
k) is as in (2.3);

(ii) for any x, x′, y ∈ X with d(x, x′) ≤ (2A0)
−1[δk + d(x, y)],

(3.3) |Q̃k(x, y)− Q̃k(x
′, y)| ≤ C

[
d(x, x′)

δk + d(x, y)

]β
Dγ(x, y; δ

k);

(iii) for any x ∈ X , �

X
Q̃k(x, y) dµ(y) = 0 =

�

X
Q̃k(y, x) dµ(y).
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We also need the following three lemmas (see, for instance, [48, Lemmas
3.5 and 3.6]).

Lemma 3.7. Let γ ∈ (0,∞) and p ∈ (ω/(ω + γ), 1] with ω as in (2.2).
Then there exists a constant C ∈ [1,∞) such that, for any k, k′ ∈ Z, x ∈ X ,
and yk,mα ∈ Qk,m

α with α ∈ Ak and m ∈ {1, . . . , N(k, α)},

C−1[Vδk∧k′ (x)]
1−p ≤

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )[Dγ(x, y

k,m
α ; δk∧k

′
)]p

≤ C[Vδk∧k′ (x)]
1−p,

where Dγ(x, y
k,m
α ; δk∧k

′
) is as in (2.3).

Lemma 3.8. Let γ ∈ (0,∞) and r ∈ (ω/(ω + γ), 1] with ω as in (2.2).
Then there exists a positive constant C such that, for any k, k′ ∈ Z, x ∈ X ,
and ak,mα ∈ C and yk,mα ∈ Qk,m

α with α ∈ Ak and m ∈ {1, . . . , N(k, α)},

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )Dγ(x, y

k,m
α ; δk∧k

′
)|ak,mα |

≤ Cδ[k−(k∧k′)]ω(1−1/r)
[
M

( ∑
α∈Ak

N(k,α)∑
m=1

|ak,mα |r1
Qk,m

α

)
(x)

]1/r
,

where Dγ(x, y
k,m
α ; δk∧k

′
) is as in (2.3) and M as in (1.2).

The next lemma is the Fefferman–Stein vector-valued maximal inequality
which was established in [13, Theorem 1.2].

Lemma 3.9. Let p ∈ (1,∞), q ∈ (1,∞], and M be the Hardy–Littlewood
maximal operator on X as in (1.2). Then there exists a positive constant C
such that, for any sequence {fj}j∈Z of measurable functions on X ,∥∥∥{∑

j∈Z
[M(fj)]

q
}1/q∥∥∥

Lp(X )
≤ C

∥∥∥(∑
j∈Z

|fj |q
)1/q∥∥∥

Lp(X )

with the usual modification when q = ∞.

Proof of Theorem 3.3. We first show (i). Assume that f ∈ AḞ s
p,q(X )

and that {Qk}k∈Z is an exp-ATI. From Remark 3.2, we infer that |Qk(f)| ≤
supϕ∈Fk(·) |⟨f, ϕ⟩| and hence ∥f∥Ḟ s

p,q(X ) ≤ ∥f∥AḞ s
p,q(X ).

Conversely, assume that f ∈ Ḟ s
p,q(X ). By Lemma 3.6, we know that, for

any l ∈ Z, x ∈ X , and ϕ ∈ Fl(x),

⟨f, ϕ⟩ =
∞∑

k=−∞

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )Qkf(y

k,m
α )

�

X
Q̃k(z, y

k,m
α )ϕ(z) dµ(z).
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Notice that, by an argument similar to that in [48, proof of Lemma 3.9], we
have, for any fixed η′ ∈ (0, β ∧ γ),∣∣∣ �

X
Q̃k(z, y

k,m
α )ϕ(z) dµ(z)

∣∣∣ ≲ δ|k−l|η′Dγ(x, y
k,m
α ; δk∧l),

where Dγ(x, y
k,m
α ; δk∧k

′
) is as in (2.3). Using this, Lemma 3.8, and the arbi-

trariness of yk,mα , and choosing r ∈ (ω/(ω + γ),min {p, q, 1}), we obtain

|⟨f, ϕ⟩| ≲
∞∑

k=−∞
δ|k−l|η′

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )|Qkf(y

k,m
α )|Dγ(x, y

k,m
α ; δk∧l)

≲
∞∑

k=−∞
δ|k−l|η′δ[k−(k∧l)]ω(1−1/r)

×
[
M

( ∑
α∈Ak

N(k,α)∑
m=1

|Qkf(y
k,m
α )|r1

Qk,m
α

)
(x)

]1/r
≲

∞∑
k=−∞

δ|k−l|η′δ[k−(k∧l)]ω(1−1/r)[M(|Qkf |r)(x)]1/r.

Consequently, we find that

∥f∥AḞ s
p,q(X ) ≲

∥∥∥[ ∞∑
l=−∞

δ(l−k)sq
{ ∞∑

k=−∞
δ|k−l|η′δ[k−(k∧l)]ω(1−1/r)

× [M(δ−ksr|Qkf |r)]1/r
}q]1/q∥∥∥

Lp(X )
,

which, together with the Hölder inequality when q ∈ (1,∞], or (3.1) when
q ∈ (ω/[ω + (β ∧ γ)], 1], implies that

∥f∥AḞ s
p,q(X ) ≲

∥∥∥{ ∞∑
k=−∞

[M(δ−ksr|Qkf |r)]q/r
}1/q∥∥∥

Lp(X )
.

From this and Lemma 3.9, we deduce that

∥f∥AḞ s
p,q(X ) ≲ ∥f∥Ḟ s

p,q(X ).

This finishes the proof of (i).
The proof of (ii) is similar to that of (i) and we omit the details. This

finishes the proof of Theorem 3.3.

Next, we establish the equivalence between homogeneous Hajłasz–Besov
and Hajłasz–Triebel–Lizorkin spaces, and homogeneous grand Besov and
Triebel–Lizorkin spaces.



Pointwise characterization of Besov–Triebel–Lizorkin spaces 17

Theorem 3.10. Let β, γ ∈ (0, η) with η as in Definition 2.5, and s ∈
(0, β ∧ γ). Assume that the measure µ of X has a weak lower bound Q = ω.

(i) If p ∈ (ω/(ω+s),∞] and q ∈ (ω/(ω+s),∞], then AḞ s
p,q(X ) = Ṁ s

p,q(X ).
(ii) If p ∈ (ω/(ω + s),∞] and q ∈ (0,∞], then AḂs

p,q(X ) = Ṅ s
p,q(X ).

To prove Theorem 3.10, we need several lemmas. The following lemma
was originally shown in [15, Theorem 8.7] when s = 1 and A0 = 1. When
s ∈ (0, 1) and A0 ∈ (1,∞), we need more restrictions on A0 and δ. We
borrow some ideas from [15, proof of Theorem 8.7]. In what follows, for any
measurable set E ⊂ X with µ(E) > 0, let

�

E

:=
1

µ(E)

�

E

.

Lemma 3.11. Let s ∈ (0,∞), p ∈ (0, ω/s), and p∗ := ωp
ω−sp with ω

as in (2.2). If A0δ
p/ω < 1, then there exists a positive constant C such

that, for any B0 := B(x0, r0) ⊂ X with x0 ∈ X and r0 ∈ (0,∞), u ∈
Ṁ s,p(B(x0, δ

−1r0)), and g ∈ Ds(u), one has u ∈ Lp∗(B0) and

(3.4) inf
c∈R

[ �

B0

|u(y)− c|p∗ dµ(y)
]1/p∗

≤ Crs0

{ �

δ−1B0

[g(y)]p dµ(y)
}1/p

.

Proof. If
	
δ−1B0

[g(y)]p dµ(y) = ∞, then (3.4) holds true. If
�

δ−1B0

[g(y)]p dµ(y) = 0,

then we know that g(x) = 0 for almost every x ∈ δ−1B0 and hence there
exists a c ∈ R such that u(x) = c for almost every x ∈ δ−1B0. Thus, in this
case, (3.4) holds true.

In what follows, we assume that

0 <
�

δ−1B0

[g(y)]p dµ(y) <∞.

Note that this implies g > 0 almost everywhere on X . Moreover, we may
also assume that, for every x ∈ δ−1B0,

(3.5) g(x) ≥ δ1+1/p
{ �

δ−1B0

[g(y)]p dµ(y)
}1/p

,

as otherwise we may replace g by g̃(x) := g(x)+ {
	
δ−1B0

[g(y)]p dµ(y)}1/p for
any x ∈ δ−1B0, because{ �

δ−1B0

[g̃(y)]p dµ(y)
}1/p

≲
{ �

δ−1B0

[g(y)]p dµ(y)
}1/p

.
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For any k ∈ Z, define

Ek := {x ∈ δ−1B0 : g(x) ≤ δ−k}.
It is easy to see that, for any k ∈ Z, we have Ek−1 ⊂ Ek and

(3.6) lim
k→∞

µ(Ek) = µ(δ−1B0).

Since g > 0 almost everywhere on X , we also have

µ
(
δ−1B0 \

⋃
k∈Z

[Ek \ Ek−1]
)
= 0,

which allows us to write

(3.7)
�

δ−1B0

[g(y)]p dµ(y) ∼
∞∑

k=−∞
δ−kpµ(Ek \ Ek−1).

For any c ∈ R, if we let ak := supy∈B0∩Ek
|u(y) − c|, then ak is non-

decreasing and

(3.8)
�

B0

|u(y)− c|p∗ dµ(y) ≤
∞∑

k=−∞
ap

∗

k µ(B0 ∩ [Ek \ Ek−1]).

Note that, if µ(δ−1B0 \Ek−1) = 0, then µ(Ek \Ek−1) = 0. Thus, to estimate
both (3.7) and (3.8), we only need to consider k ∈ Z such that µ(δ−1B0 \
Ek−1) > 0, which is always assumed in what follows. Let

(3.9) b := (4A0)
−ωδωr−ω

0 µ(δ−1B0)

and
rk := 2b−1/ω[µ(δ−1B0 \ Ek−1)]

1/ω.

Then we know that rk ∈ (0,∞). Moreover, from the Chebyshev inequality,
we infer that

µ(δ−1B0 \ Ek) = µ({x ∈ δ−1B0 : g(x) > δ−k})(3.10)

≤ δkp
�

δ−1B0

[g(y)]p dµ(y),

which implies that limk→∞ rk = 0. Thus, there exists a k0 ∈ Z, which will
be determined later, such that, for any k > k0, we can find an xk ∈ B0 sat-
isfying B(xk, rk) ⊂ δ−1B0, where rk ≤ δ−1r0. Observe that, by the doubling
condition of X , we can conclude that, for any k > k0, µ(B(xk, rk)) ≥ brωk .
Combining this and the definition of rk, we find that

µ(B(xk, rk)) ≥ brωk > µ(δ−1B0 \ Ek−1) = µ(δ−1B0)− µ(Ek−1).

From this, we deduce that B(xk, rk) ∩ Ek−1 ̸= ∅, that is, there exists an
xk−1 ∈ B(xk, rk)∩Ek−1. Now, if B(xk−1, rk−1) ⊂ δ−1B0, then we can repeat
the above procedure to find an xk−2 such that xk−2 ∈ B(xk−1, rk−1)∩Ek−2.
In summary, for any i ∈ {1, . . . , k − k0 + 1}, if B(xk−i, rk−i) ⊂ δ−1B0, then
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we can find an xk−i−1 such that xk−i−1 ∈ B(xk−i, rk−i) ∩ Ek−i−1. We now
want to determine k0. Note that, by (3.10), xk ∈ B0, and the assumption
that A0δ

p/ω < 1, we find that, for any y ∈ B(xk0 , rk0),
d(y, x0) ≤ A0[d(y, xk) + d(xk, x0)]

< A0d(y, xk) +A0r0

≤ A2
0[d(y, xk0) + d(xk0 , xk)] +A0r0

≤ A2
0rk0 +A3

0[d(xk0 , xk0+1) + d(xk0+1, xk)] +A0r0

≤ A2
0rk0 +A3

0rk0+1 + · · ·+Ak−k0+1
0 rk−1 +Ak−k0+1

0 rk +A0r0

≤ 2A−k0+3
0 b−1/ω

{ �

δ−1B0

[g(z)]p dµ(z)
}1/ω

k−1∑
i=k0−1

(A0δ
p/ω)i +A0r0

≤ A2
0δ

(k0−1)p/ω 2b−1/ω

1−A0δp/ω

{ �

δ−1B0

[g(z)]p dµ(z)
}1/ω

+A0r0.

If

(3.11) A2
0δ

(k0−1)p/ω 2b−1/ω

1−A0δp/ω

{ �

δ−1B0

[g(z)]p dµ(z)
}1/ω

+A0r0 ≤ δ−1r0,

then we conclude that, for any i ∈ {1, . . . , k − k0}, B(xk−i, rk−i) ⊂ δ−1B0.
Observe that (3.11) is equivalent to

δ1−k0 ≥
[

2A2
0

(1−A0δp/ω)(δ−1 −A0)

]ω/p
(3.12)

× (brω0 )
−1/p

{ �

δ−1B0

[g(z)]p dµ(z)
}1/p

.

We claim that, if (3.12) holds true, then rk ≤ δ−1r0 for any k ≥ k0. Indeed,
from the definition of rk, (3.10), (3.12), and the fact that δ is very small, we
deduce that

rk ≤ 2b−1/ω
{
δ(k−1)p

�

δ−1B0

[g(y)]p dµ(y)
}1/ω

≤ 2b−1/ωδ(k0−1)p/ω
{ �

δ−1B0

[g(y)]p dµ(y)
}1/ω

≤ 2b−1/ω

[
2A2

0

(1−A0δp/ω)(δ−1 −A0)

]−1

b1/ωr0

{ �

δ−1B0

[g(y)]p dµ(y)
}−1/ω

≤ (1−A0δ
p/ω)(δ−1 −A0)

A2
0

r0 ≤ δ−1r0.

Thus, the above claim holds true.
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Observe that (3.5) implies Ek = ∅ for k ∈ Z small enough. Using this
and (3.6), we conclude that there exists a k̃0 ∈ Z such that

(3.13) µ(E
k̃0−1

) < δµ(δ−1B0) ≤ µ(E
k̃0
).

From this, we deduce that E
k̃0

̸= ∅ and, by (3.5), for any x ∈ E
k̃0

we have

δ1+1/p
{ �

δ−1B0

[g(y)]p dµ(y)
}1/p

≤ g(x) ≤ δ−k̃0 .

On the other hand, since δ is very small, we may assume that δ < 1/2. Then,
by both (3.13) and (3.10), we know that

δµ(δ−1B0) < (1− δ)µ(δ−1B0) < µ(δ−1B0 \ Ek̃0−1
)

≤ δ(k̃0−1)p
�

δ−1B0

[g(y)]p dµ(y).

Combining the above two estimates, we find that

δ1+1/p
{ �

δ−1B0

[g(y)]p dµ(y)
}1/p

≤ δ−k̃0 ≤ δ−1−1/p
{ �

δ−1B0

[g(y)]p dµ(y)
}1/p

.

Let l0 be the smallest integer such that

δ−l0 > max

{
δ−2−1/p

[
2A2

0

(1−A0δp/ω)(δ−1 −A0)

]ω/p
, 1

}[
µ(δ−1B0)

brω0

]1/p
and let k0 := k̃0 + l0. Then we conclude that (3.12) holds true and

δ−k0 = δ−1δ−k̃0δ−(l0−1)

≤ δ−1δ−1−1/p
{ �

δ−1B0

[g(y)]p dµ(y)
}1/p

×max

{
δ−2−1/p

[
2A2

0

(1−A0δp/ω)(δ−1 −A0)

]ω/p
, 1

}[
µ(δ−1B0)

brω0

]1/p
≲ (brω0 )

−1/p
{ �

δ−1B0

[g(z)]p dµ(z)
}1/p

,

which, together with (3.12), implies that

(3.14) δ−k0 ∼ (brω0 )
−1/p

{ �

δ−1B0

[g(z)]p dµ(z)
}1/p

.

Now, we estimate ak by considering two cases of k.

Case 1: k > k0. In this case, it suffices to consider k > k0 such that
Ek ∩B0 ̸= ∅. For any xk ∈ Ek ∩B0, choose {xk−1, . . . , xk0} as above. Then,
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from g ∈ Ds(u), the definition of rk, (3.10), and p ∈ (0, ω/s), we find that,
for any c ∈ R,

|u(xk)− c|

≤
k−k0−1∑

i=0

|u(xk−i)− u(xk−i−1)|+ |u(xk0)− c|

≤
k−k0−1∑

i=0

[d(xk−i, xk−i−1)]
s[g(xk−i) + g(xk−i−1)] + |u(xk0)− c|

≲
k−k0−1∑

i=0

δ−k+irsk−i + |u(xk0)− c|

≲ b−s/ω
{ �

δ−1B0

[g(z)]p dµ(z)
}s/ω

k−k0−1∑
i=0

δ−k+iδ(k−i−1)ps/ω + |u(xk0)− c|

≲ b−s/ω
{ �

δ−1B0

[g(z)]p dµ(z)
}s/ω

δ−(k−1)(1−ps/ω) + |u(xk0)− c|,

which implies that

ak ≲ b−s/ω
{ �

δ−1B0

[g(z)]p dµ(z)
}s/ω

δ−k(1−ps/ω) + sup
x∈Ek0

|u(x)− c|.

Choose a c̃ ∈ R such that ess infx∈Ek0
|u(x) − c̃| = 0. Then we can find

{yj}j∈N ⊂ Ek0 such that limj→∞ |u(yj) − c̃| = 0. As g ∈ Ds(u), using the
definition of Ek0 , we have, for any x ∈ Ek0 ,

|u(x)− c̃ | = lim
j→∞

|[u(x)− c̃ ]− [u(yj)− c̃ ]| = lim
j→∞

|u(x)− u(yj)|(3.15)

≤ lim
j→∞

[d(x, yj)]
s[g(x) + g(yj)] ≤ 2s+1As

0r
s
0δ

−k0−s,

which further implies that, for any k > k0,

(3.16) ak ≲ b−s/ω
{ �

δ−1B0

[g(z)]p dµ(z)
}s/ω

δ−k(1−ps/ω) + rs0δ
−k0 .

Case 2: k ≤ k0. In this case, by both (3.15) and the fact that Ek is
increasing, we find that

ak = sup
y∈B0∩Ek

|u(y)− c̃|(3.17)

≤ sup
y∈B0∩Ek0

|u(y)− c̃| ≤ sup
y∈Ek0

|u(y)− c̃| ≲ rs0δ
−k0 ,

where we let ak := 0 if B0 ∩ Ek = ∅.
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From (3.16), (3.17), (3.8), (3.7), (3.14), and (3.9), we deduce that
�

B0

|u(y)− c̃ |p∗ dµ(y)

≤
∞∑

k=−∞
ap

∗

k µ(B0 ∩ [Ek \ Ek−1])

≲ b−sp∗/ω
{ �

δ−1B0

[g(z)]p dµ(z)
}sp∗/ω

∞∑
k=−∞

δ−k(1−ps/ω)p∗µ(Ek \ Ek−1)

+ rsp
∗

0 δ−k0p∗µ(B0)

≲ b−sp∗/ω
{ �

δ−1B0

[g(z)]p dµ(z)
}sp∗/ω{ �

δ−1B0

[g(z)]p dµ(z)
}

+ µ(B0)r
sp∗

0 (brω0 )
−p∗/p

{ �

δ−1B0

[g(z)]p dµ(z)
}p∗/p

≲

[
1 +

µ(B0)

brω0

]
b−sp∗/ω

{ �

δ−1B0

[g(z)]p dµ(z)
}p∗/p

≲
µ(B0)

brω0
b−sp∗/ω

{ �

δ−1B0

[g(z)]p dµ(z)
}p∗/p

,

which implies that[ �

B0

|u(y)− c̃|p∗ dµ(y)
]1/p∗

≲ (brω0 )
−1/p∗b−s/ω

{ �

δ−1B0

[g(y)]p dµ(y)
}1/p

.

Recalling that b = (4A0)
−ωδωr−ω

0 µ(δ−1B0), we then conclude that

(brω0 )
−1/p∗b−s/ω ≲ rs0[µ(δ

−1B0)]
−1/p.

This finishes the proof of Lemma 3.11.

Remark 3.12. Let p∗, u, and B0 be as in Lemma 3.11. If p∗ ∈ [1,∞),
then u ∈ L1(B0), and moreover the left hand side of (3.4) can be replaced
by [ �

B0

|u(y)− uB0 |p
∗
dµ(y)

]1/p∗
,

where

uB0 :=
�

B0

u(y) dµ(y).
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Indeed, we can find a c0 ∈ R such that[ �

B0

|u(y)− c0|p
∗
dµ(y)

]1/p∗
≤ 2 inf

c∈R

[ �

B0

|u(y)− c|p∗ dµ(y)
]1/p∗

.

By the Hölder inequality, we have[ �

B0

|u(y)− uB0 |p
∗
dµ(y)

]1/p∗
=

[ �

B0

|u(y)−
�

B0

u(z) dµ(z)
∣∣∣p∗ dµ(y)]1/p∗

≤
[ �

B0

�

B0

|u(y)− u(z)|p∗ dµ(z) dµ(y)
]1/p∗

≲
[ �

B0

|u(y)− c0|p
∗
dµ(y)

]1/p∗
.

This finishes the proof of the above claim.

The next result is a consequence of Lemma 3.11 and highlights the
fact that functions in Ṁ s

p,q(X ) are actually locally integrable whenever p ∈
(ω/(ω + s),∞).

Corollary 3.13. Let s ∈ (0,∞), q ∈ (0,∞], and p ∈ (ω/(ω + s),∞)
with ω as in (2.2). Then every function in Ṁ s

p,q(X ) is locally integrable on X .

Proof. Fix a u ∈ Ṁ s
p,q(X ) and observe that, if {gk}k∈Z ∈ Ds(u), then

g ∈ Ds(u), where

g :=
( ∞∑
k=−∞

gqk

)1/q

with the usual modification when q = ∞. Thus, u ∈ Ṁ s,p(X ). Consider
any ball B0 ⊂ X and suppose A0δ

p/ω < 1. If we choose a t ∈ (ω/(ω + s),
p ∧ (ω/s)), then u ∈ Ṁ s,t(δ−1B0) and Lemma 3.11 implies u ∈ Lt∗(B0),
where t∗ = ωt

ω−st > 1. Thus, u ∈ L1(B0), which completes the proof.

The following result also follows from Lemma 3.11.

Corollary 3.14. Let s ∈ (0,∞), p ∈ (ω/(ω + s), ω/s), and p∗ := ωp
ω−sp

with ω as in (2.2). Assume that X has a weak lower bound Q = ω. Then, for
any u ∈ Ṁ s,p(X ), there exists a constant C ∈ R such that u − C ∈ Lp∗(X )
and

(3.18) ∥u− C∥Lp∗(X ) ≤ C̃∥u∥Ṁs,p(X ),

where C̃ is a positive constant independent of u.

Proof. Let u ∈ Ṁ s,p(X ) and fix a point x0 ∈ X . For any k ∈ N, let
Bk := B(x0, k). Choose a g ∈ Ds(u) such that ∥g∥Lp(X ) ≤ 2∥u∥Ṁs,p(X ). By
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Lemma 3.11, we find that, for any k ∈ N,[ �

Bk

|u(y)− uBk
|p∗ dµ(y)

]1/p∗
≲ ks

{ �

δ−1Bk

[g(y)]p dµ(y)
}1/p

≲ ks[µ(Bk)]
−1/p∥u∥Ṁs,p(X ).

This, together with the assumption that X has a weak lower bound Q = ω,
and Proposition 2.15, implies that[ �

Bk

|u(y)− uBk
|p∗ dµ(y)

]1/p∗
≲ ks[µ(Bk)]

1/p∗−1/p∥u∥Ṁs,p(X )(3.19)

≲ ks(1−Q/ω)∥u∥Ṁs,p(X ) ≲ ∥u∥Ṁs,p(X ).

From this, we find that, for any k ∈ N,

|uBk
− uB1 | ≤

1

µ(B1)

�

B1

|u(y)− uBk
| dµ(y)

≤ 1

[µ(B1)]1/p
∗

[ �

B1

|u(y)− uBk
|p∗ dµ(y)

]1/p∗
≤ 1

[µ(B1)]1/p
∗ ∥u∥Ṁs,p(X ),

which implies that {uBk
}k∈N ⊂ R is a bounded sequence. Therefore,

there exist a subsequence {uBkj
}j∈N and a constant C ∈ R such that

C = limj→∞ uBkj
. Moreover, by (3.19) and the Fatou lemma, we further

conclude that[ �
X
|u(x)− C|p∗ dµ(x)

]1/p∗
=

[ �
X

lim
j→∞

|[u(x)− uBkj
]1Bkj

(x)|p∗ dµ(x)
]1/p∗

≤ lim
j→∞

[ �

Bkj

|u(x)− uBkj
|p∗ dµ(x)

]1/p∗
≲ ∥u∥Ṁs,p(X ).

This finishes the proof of Corollary 3.14.

Remark 3.15. Let ω be as in (2.2) and p ∈ (0, ω). In [1, Theorem 22],
Alvarado et al. proved that, if X is uniformly perfect (see [1, (39)]), then
(3.18) with s = 1 is equivalent to X having a lower bound.

The following lemma is a Poincaré type inequality for Ds(u) (see also [37,
Lemma 2.1]).

Lemma 3.16. Let s ∈ (0,∞). Then there exists a positive constant C
such that, for any k ∈ Z, any measurable function u on X , any x ∈ X , and
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any {gj}j∈Z ∈ Ds(u),

(3.20) inf
c∈R

�

B(x,δk)

|u(y)− c| dµ(y) ≤ Cδks
k−1∑

j=k−3

�

B(x,δk−2)

gj(y) dµ(y).

Proof. Observe that, for any k ∈ Z and x ∈ X ,

(3.21) inf
c∈R

�

B(x,δk)

|u(y)− c| dµ(y)

≤
�

B(x,δk)

|u(y)− uB(x,δk−2)\B(x,A0δk−1)| dµ(y)

≤
�

B(x,δk)

�

B(x,δk−2)\B(x,A0δk−1)

|u(y)− u(z)| dµ(y) dµ(z).

As δ is very small, for any y ∈ B(x, δk) and z ∈ B(x, δk−2) \ B(x,A0δ
k−1)

we have

d(y, z) ≤ A0[d(y, x) + d(x, z)] < 2A0δ
k−2 ≤ δk−3,

d(x, z) ≤ A0[d(x, y) + d(y, z)] < A0δ
k +A0d(y, z),

which implies that
δk ≤ d(y, z) < δk−3.

From this, we deduce that there exists a unique j0 ∈ {k − 1, k − 2, k − 3}
such that

δj0+1 ≤ d(y, z) < δj0

and hence

|u(y)− u(z)| ≤ [d(y, z)]s[gj0(y) + gj0(z)] ≤ δ(k−3)s
k−1∑

j=k−3

[gj(y) + gj(z)].

Therefore, by (3.21), we conclude that

inf
c∈R

�

B(x,δk)

|u(y)− c| dµ(y)

≲ δks
k−1∑

j=k−3

�

B(x,δk)

�

B(x,δk−2)\B(x,A0δk−1)

[gj(y) + gj(z)] dµ(y)µ(z)

≲ δks
k−1∑

j=k−3

�

B(x,δk−2)

gj(y) dµ(y),

which completes the proof of Lemma 3.16.
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Remark 3.17. Similarly to Remark 3.12, under the same assumptions
as in Lemma 3.16, the left hand side of (3.20) can be replaced by

�

B(x,δk)

|u(y)− uB(x,δk)| dµ(y).

Using Lemma 3.11, we can show the following Poincaré type inequality
which is very useful in the case when p ∈ (0, 1].

Lemma 3.18. Let s ∈ (0,∞), p ∈ (0, 1], and ε, ε′ ∈ (0, s) with ε < ε′. If
A0δ

p/ω < 1, then there exists a positive constant C such that, for any k ∈ Z,
any x ∈ X , any measurable function u, and any {gj}j∈Z ∈ Ds(u),

(3.22) inf
c∈R

[ �

B(x,δk)

|u(y)− c|
ωp

ω−εp dµ(y)
]ω−εp

ωp

≤ Cδkε
′

∞∑
j=k−2

δj(s−ε′)
{ �

B(x,δk−1)

[gj(y)]
p dµ(y)

}1/p
.

Proof. Without loss of generality, we may assume that the right hand
side of (3.22) is finite. For any k ∈ Z and x ∈ X , let

g(x) :=
{ ∞∑
j=k−2

δj(s−ε)p[gj(x)]
p
}1/p

.

We claim that g ∈ Ds(u) and u ∈ Ṁ ε,p(B(x, δk−1)). Indeed, for any y, z ∈
B(x, δk−1), we have

d(y, z) ≤ A0[d(y, x) + d(x, z)] < 2A0δ
k−1 < δk−2.

Therefore, there exists a unique integer j0 ≥ k − 2 such that

δj0+1 ≤ d(y, z) < δj0 .

Then, since {gj}j∈Z ∈ Ds(u), it follows that there exists an E ⊂ X with
µ(E) = 0 such that, for any y, z ∈ B(x, δk−1) \ E,

|u(y)− u(z)| ≤ [d(y, z)]s[gj0(y) + gj0(z)] ≤ [d(y, z)]εδj0(s−ε)[gj0(y) + gj0(z)]

≤ [d(y, z)]ε[g(y) + g(z)],

which implies g∈Dε(u). On the other hand, since p∈(0, 1] and 0<ε<ε′<s,
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by the Hölder inequality with exponent 1/p ≥ 1 we conclude that

∥g∥Lp(B(x,δk−1))

=
{ �

B(x,δk−1)

∞∑
j=k−2

δj(s−ε)p[gj(y)]
p dµ(y)

}1/p

=
{ ∞∑
j=k−2

δj(ε
′−ε)pδj(s−ε′)p

�

B(x,δk−1)

[gj(y)]
p dµ(y)

}1/p

≤
[ ∞∑
j=k−2

δj(ε
′−ε)p(1/p)′

] 1
(1/p)′p

∞∑
j=k−2

δj(s−ε′)
{ �

B(x,δk−1)

[gj(y)]
p dµ(y)

}1/p

≲ δk(ε
′−ε)[Vδk−1(x)]1/p

∞∑
j=k−2

δj(s−ε′)
{ �

B(x,δk−1)

[gj(y)]
p dµ(y)

}1/p
<∞.

From this, we deduce that u ∈ Ṁ ε,p(B(x, δk−1)). Combining the above claim
and Lemma 3.11, and using the Hölder inequality with exponent 1/p ≥ 1,
we find that

inf
c∈R

[ �

B(x,δk)

|u(y)− c|
ωp

ω−εp dµ(y)
]ω−εp

ωp

≲ δkε
{ �

B(x,δk−1)

[g(y)]p dµ(y)
}1/p

∼ δkε
{ ∞∑
j=k−2

δj(s−ε)p
�

B(x,δk−1)

[gj(y)]
p dµ(y)

}1/p

≲ δkε
{ ∞∑
j=k−2

δj(ε
′−ε)p(1/p)′

} 1
(1/p)′p

∞∑
j=k−2

δj(s−ε′)
{ �

B(x,δk−1)

[gj(y)]
p dµ(y)

}1/p

≲ δkε
′

∞∑
j=k−2

δj(s−ε′)
{ �

B(x,δk−1)

[gj(y)]
p dµ(y)

}1/p
.

This finishes the proof of Lemma 3.18.

The following lemma illustrates that any element of AḞ s
p,∞(X ) is a locally

integrable function.

Lemma 3.19. Let β, γ ∈ (0, η) with η as in Definition 2.5, s ∈ (0, β ∧ γ),
and p ∈ (ω/(ω+ s),∞) with ω as in (2.2). Assume that the measure µ of X
has a weak lower bound Q = ω. Then, for any f ∈ AḞ s

p,∞(X ), there exists
an f̃ ∈ L1

loc (X ) such that f = f̃ in (G̊η
0 (β, γ))

′.
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To prove Lemma 3.19, we need the concept of approximations of the
identity with exponential decay and integration 1; see [23, Definition 2.8] for
more details.

Definition 3.20. Let η ∈ (0, 1) be as in Definition 2.5. A sequence
{Qk}k∈Z of bounded linear integral operators on L2(X ) is called an approx-
imation of the identity with exponential decay and integration 1 (for short,
1-exp-ATI) if {Qk}k∈Z has the following properties:

(i) for any k ∈ Z, Qk satisfies (ii), (iii), and (iv) of Definition 2.5 but
without the decay factor

exp

{
−ν

[
max {d(x,Yk), d(y,Yk)}

δk

]a}
;

(ii) for any k ∈ Z and x ∈ X ,
�

X
Qk(x, y) dµ(y) = 1 =

�

X
Qk(y, x) dµ(y);

(iii) if Pk := Qk −Qk−1 for any k ∈ Z, then {Pk}k∈Z is an exp-ATI.

Remark 3.21. As was pointed out in [23, Remark 2.9], the existence
of a 1-exp-ATI is guaranteed by [4, Lemma 10.1]. Moreover, by the proofs
of both [24, Proposition 2.9] and [20, Proposition 2.7(iv)], we know that, if
{Qk}k∈Z is a 1-exp-ATI, then, for any f ∈ L2(X ), limk→∞Qkf = f in L2(X ).

By an argument similar to that in [24, proof of Proposition 2.10], we have
the following conclusion; we omit the details.

Lemma 3.22. Let β, γ ∈ (0, η) with η as in Definition 2.5, s ∈ (0, β ∧ γ),
k ∈ Z, x, y ∈ X , and {Qk}k∈Z be a 1-exp-ATI. For any z ∈ X , let

ϕ(z) := δks[d(x, y)]−s[Qk(x, z)−Qk(y, z)].

If d(x, y) ∈ (0, δk], then ϕ ∈ Fk(x), where Fk(x) is as in Definition 3.1.

Proof of Lemma 3.19. Assume that f ∈ AḞ s
p,∞(X ) and that {Qk}k∈Z is

a 1-exp-ATI. For any x ∈ X , let

g(x) := sup
k∈Z

δ−ks sup
ϕ∈Fk(x)

|⟨f, ϕ⟩|.

First, for any k ∈ Z, i ∈ N, and x ∈ X , we have

|Qkf(x)−Qk+if(x)| ≤
i−1∑
j=0

|Qk+jf(x)−Qk+j+1f(x)|

=

i−1∑
j=0

|⟨f,Qk+j(x, ·)−Qk+j+1(x, ·)⟩|.
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Note that, by (2.6) and (2.7), we obtain, for any k ∈ Z and x ∈ X ,

Qk+j(x, ·)−Qk+j+1(x, ·) ∈ Fk+j+1(x).

From this, we deduce that

|Qkf(x)−Qk+if(x)| ≤
i−1∑
j=0

δ(k+j+1)sg(x) ≲ δksg(x).(3.23)

We begin with the case p ∈ (1,∞). To this end, note that (3.23) implies
that {Qkf−Qk+if}i∈N is a Cauchy sequence of Lp(X ). By the completeness
of Lp(X ), there exists an fk ∈ Lp(X ) such that

lim
i→∞

(Qkf −Qk+if) = fk

both in Lp(X ) and pointwise. Observe that, for any k, k′ ∈ Z, we have

fk = lim
i→∞

(Qkf −Qk+if) = Qkf −Qk′f + lim
i→∞

(Qk′f −Qk+if)

= Qkf −Qk′f + fk′

both in Lp(X ) and pointwise. Let f̃ := Q0f − f0. Then f̃ ∈ L1
loc (X ) and,

for any k ∈ Z, f̃ = Qkf − fk. On the other hand, as Qkf → f in (G̊η
0 (β, γ))

′

as k → ∞, it follows that, for any ψ ∈ G̊η
0 (β, γ),

⟨f̃ , ψ⟩ =
�

X
f̃(x)ψ(x) dµ(x)

=
�

X

{
Q0f(x)− lim

i→∞
[Q0f(x)−Qif(x)]

}
ψ(x) dµ(x)

=
�

X
Q0f(x)ψ(x) dµ(x)− lim

i→∞

�

X
[Q0f(x)−Qif(x)]ψ(x) dµ(x)

= lim
i→∞

�

X
Qif(x)ψ(x) dµ(x) = lim

i→∞
⟨Qif, ψ⟩ = ⟨f, ψ⟩,

which completes the proof of the lemma in the case when p ∈ (1,∞).
Next, we consider the case p ∈ (ω/(ω+s), 1]. For any x, y ∈ X , let k0 ∈ Z

be such that δk0+1 < d(x, y) ≤ δk0 . Then, by Lemma 3.22 and (3.23), we
conclude that, for any k ∈ Z with k > k0,

(3.24) |Qkf(x)−Qkf(y)| ≤ |Qkf(x)−Qk0f(x)|+ |Qk0f(x)−Qk0f(y)|
+ |Qk0f(y)−Qkf(y)|

≲ δk0s[g(x) + g(y)] ≲ [d(x, y)]s[g(x) + g(y)].

On the other hand, for any k ∈ Z with k ≤ k0,

|Qkf(x)−Qkf(y)| = [d(x, y)]sδ−ks⟨f, δks[d(x, y)]−s[Qk(x, ·)−Qk(y, ·)]⟩.
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Note that, due to k ≤ k0, we have d(x, y) ≤ δk. From this and Lemma 3.22,
we deduce that

δks[d(x, y)]−s[Qk(x, ·)−Qk(y, ·)] ∈ Fk(x),

which implies that

|Qkf(x)−Qkf(y)| ≲ [d(x, y)]s[g(x) + g(y)].

Combining this and (3.24), we conclude that, for any k ∈ Z,

(3.25) |Qkf(x)−Qkf(y)| ≲ [d(x, y)]s[g(x) + g(y)].

Moreover, as f ∈ AḞ s
p,∞(X ), we know that g ∈ Lp(X ). From this and (3.25),

we further infer that, for any k ∈ Z,

Qkf ∈ Ṁ s,p(X ) and ∥Qkf∥Ṁs,p(X ) ≲ ∥g∥Lp(X ) ∼ ∥f∥AḞ s
p,∞(X ).

Using this and Corollary 3.14, we find that, for any k ∈ Z, there exists a
constant Ck such that

Qkf−Ck∈Lp∗(X ) and ∥Qkf−Ck∥Lp∗ (X )≲∥Qkf∥Ṁs,p(X )≲∥f∥AḞ s
p,∞(X ).

From this and the weak compactness property of Lp∗(X ) (recall that p∗ > 1
in this case), we deduce that there exist a subsequence {Qkjf −Ckj}j∈N and
a function f̃ ∈ Lp∗(X ) such that

f̃ = lim
j→∞

[Qkjf − Ckj ]

both weakly in Lp∗(X ) and also in (G̊η
0 (β, γ))

′. Moreover, by (3.23), we find
that Qkjf −Qkj′f ∈ Lp(X ) and [Qkjf − Ckj ]− [Qkj′f − Ckj′ ] ∈ Lp∗(X ) for
any j, j′ ∈ N, which further implies that Ckj = Ckj′ . Since Qkjf → f in
(G̊η

0 (β, γ))
′ as j → ∞, we conclude that

f = f − Ck0 = lim
j→∞

[Qkjf − Ckj ] = f̃

in (G̊η
0 (β, γ))

′. This finishes the proof of Lemma 3.19.

Proof of Theorem 3.10. We only prove (i); the proof of (ii) is similar. We
first show

Ṁ s
p,q(X ) ⊂ AḞ s

p,q(X ).

To this end, fix a u ∈ Ṁ s
p,q(X ) and recall that u is locally integrable on X

by Corollary 3.13. With this in mind, we consider five cases of p and q.

Case 1: p ∈ (1,∞) and q ∈ (1,∞]. In this case, we only consider q ∈
(1,∞), because the proof for q = ∞ is similar. Choose a {gk}k∈Z ∈ Ds(u)
such that ∥∥∥( ∞∑

k=−∞
gqk

)1/q∥∥∥
Lp(X )

≲ ∥u∥Ṁs
p,q(X ).
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Then, for any k ∈ Z, x ∈ X , and ϕ ∈ Fk(x),

|⟨u, ϕ⟩| =
∣∣∣ �
X
ϕ(y)u(y) dµ(y)

∣∣∣ = ∣∣∣ �
X
ϕ(y)[u(y)− uB(x,δk)] dµ(y)

∣∣∣
≤

�

X
Dγ(x, y; δ

k)|u(y)− uB(x,δk)| dµ(y)

≲
∞∑
j=0

δjγ
�

B(x,δk−j)

|u(y)− uB(x,δk)| dµ(y),

where Dγ(x, y; δ
k) is as in (2.3). Notice that, for any k ∈ Z, j ∈ Z+, and

x ∈ X ,
�

B(x,δk−j)

|u(y)− uB(x,δk)| dµ(y)

=
�

B(x,δk−j)

|u(y)− uB(x,δk−1) + uB(x,δk−1) − uB(x,δk)| dµ(y)

≤
�

B(x,δk−j)

|u(y)− uB(x,δk−1)| dµ(y)

+
1

Vδk(x)

�

B(x,δk)

|u(y)− uB(x,δk−1)| dµ(y)

≲
�

B(x,δk−j)

|u(y)− uB(x,δk−1)| dµ(y)

+
�

B(x,δk−1)

|u(y)− uB(x,δk−1)| dµ(y)

≲
j∑

i=0

�

B(x,δk−i)

|u(y)− uB(x,δk−i)| dµ(y).

Combining the above two inequalities, we obtain, for any k ∈ Z,

|⟨u, ϕ⟩| ≲
∞∑
j=0

δjγ
j∑

i=0

�

B(x,δk−i)

|u(y)− uB(x,δk−i)| dµ(y)(3.26)

∼
∞∑
i=0

∞∑
j=i

δjγ
�

B(x,δk−i)

|u(y)− uB(x,δk−i)| dµ(y)

≲
∞∑
i=0

δiγ
�

B(x,δk−i)

|u(y)− uB(x,δk−i)| dµ(y).
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From this and Lemma 3.16 (see also Remark 3.17), we get, for any k ∈ Z,

|⟨u, ϕ⟩| ≲
∞∑
i=0

δiγδ(k−i)s
k−i−1∑

j=k−i−3

�

B(x,δk−i−2)

gj(y) dµ(y)(3.27)

≲ δks
k∑

j=−∞

k−j−1∑
i=k−j−3

δi(γ−s)
�

B(x,δk−i−2)

gj(y) dµ(y)

≲ δkγ
k∑

j=−∞
δ−j(γ−s)

�

B(x,δj−2)

gj(y) dµ(y)

≲ δkγ
k∑

j=−∞
δ−j(γ−s)M(gj)(x).

By the Hölder inequality and Lemma 3.9, we conclude that

∥u∥AḞ s
p,q(X ) ≲

∥∥∥{ ∞∑
k=−∞

δ−ksq
[
δkγ

k∑
j=−∞

δ−j(γ−s)M(gj)
]q}1/q∥∥∥

Lp(X )

≲
∥∥∥{ ∞∑

k=−∞
δk(γ−s)

k∑
j=−∞

δ−j(γ−s)[M(gj)]
q
}1/q∥∥∥

Lp(X )

≲
∥∥∥{ ∞∑

j=−∞
[M(gj)]

q
}1/q∥∥∥

Lp(X )
≲

∥∥∥{ ∞∑
j=−∞

gqj

}1/q∥∥∥
Lp(X )

≲ ∥u∥Ṁs
p,q(X ),

which is the desired estimate in this case.

Case 2: p ∈ (1,∞) and q ∈ (ω/(ω + s), 1]. In this case, choose a
{gk}k∈Z ∈ Ds(u) as in Case 1. Recall that we may assume A0δ

p/ω < 1.
Hence, combining (3.26) and Lemma 3.18 [with p = ω/(ω + ε) < 1], we find
that, for any fixed ε, ε′ ∈ (0, s) with ε < ε′,

|⟨u, ϕ⟩| ≲
∞∑
i=0

δiγδ(k−i)ε′
∞∑

j=k−i−2

δj(s−ε′)(3.28)

×
{ �

B(x,δk−i−1)

[gj(y)]
ω

ω+ε dµ(y)
}ω+ε

ω

≲ δkε
′

k−2∑
j=−∞

δj(s−ε′)
[
M

(
[gj(x)]

ω
ω+ε

)]ω+ε
ω

∞∑
i=k−j−2

δi(γ−ε′)

+ δkε
′

∞∑
j=k−1

δj(s−ε′)
[
M

(
[gj(x)]

ω
ω+ε

)]ω+ε
ω

∞∑
i=0

δi(γ−ε′)
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≲ δkγ
k−2∑

j=−∞
δj(s−γ)

[
M

(
[gj(x)]

ω
ω+ε

)]ω+ε
ω

+ δkε
′

∞∑
j=k−1

δj(s−ε′)
[
M

(
[gj(x)]

ω
ω+ε

)]ω+ε
ω .

Choosing an ε ∈ (0, s) such that ω
ω+s <

ω
ω+ε < q, and using (3.28), (3.1)

(with θ = q), and Lemma 3.9, we conclude that

∥u∥AḞ s
p,q(X ) ≲

∥∥∥( ∞∑
k=−∞

δ−ksq
{
δkγ

k−2∑
j=−∞

δj(s−γ)[M([gj ]
ω

ω+ε )]
ω+ε
ω

+ δkε
′

∞∑
j=k−1

δj(s−ε′)
[
M

(
[gj ]

ω
ω+ε

)]ω+ε
ω

}q)1/q∥∥∥
Lp(X )

≲
∥∥∥{ ∞∑

k=−∞
δ−ksqδkγq

k−2∑
j=−∞

δj(s−γ)q
[
M

(
[gj ]

ω
ω+ε

)] (ω+ε)q
ω

}1/q∥∥∥
Lp(X )

+
∥∥∥{ ∞∑

k=−∞
δ−ksqδkε

′q
∞∑

j=k−1

δj(s−ε′)q
[
M

(
[gj ]

ω
ω+ε

)] (ω+ε)q
ω

}1/q∥∥∥
Lp(X )

≲
∥∥∥{ ∞∑

j=−∞

[
M

(
[gj ]

ω
ω+ε

)] (ω+ε)q
ω

}1/q∥∥∥
Lp(X )

≲
∥∥∥{ ∞∑

j=−∞
gqj

}1/q∥∥∥
Lp(X )

≲ ∥u∥Ṁs
p,q(X ).

This is the desired estimate in this case.

Case 3: p ∈ (ω/(ω+s), 1] and q ∈ (ω/(ω+s),∞]. In this case, the proof
is similar to that in Case 2; the details are omitted.

Case 4: p = ∞ and q ∈ (1,∞]. In this case, we only consider q ∈ (1,∞)
because the proof for q = ∞ is similar. Choose a {gk}k∈Z ∈ Ds(u) such that

(3.29) sup
k∈Z

sup
x∈X

{ ∞∑
j=k

�

B(x,δk)

[gj(y)]
q dµ(y)

}1/q
≲ ∥u∥Ṁs

∞,q(X ).

From (3.27) and the Hölder inequality, we infer that, for any l ∈ Z and
x ∈ X ,

�

B(x,2A0C0δl)

∞∑
k=l

δ−ksq sup
ϕ∈Fk(z)

|⟨u, ϕ⟩|q dµ(z)

≲
�

B(x,2A0C0δl)

∞∑
k=l

δ−ksq
[
δkγ

k∑
j=−∞

δ−j(γ−s)
�

B(z,δj−2)

gj(y) dµ(y)
]q
dµ(z)
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≲
�

B(x,2A0C0δl)

∞∑
k=l

δk(γ−s)
k∑

j=−∞
δ−j(γ−s)

[ �

B(z,δj−2)

gj(y) dµ(y)
]q
dµ(z)

≲
�

B(x,2A0C0δl)

∞∑
k=l

δk(γ−s)
l−1∑

j=−∞
δ−j(γ−s)

[ �

B(z,δj−2)

gj(y) dµ(y)
]q
dµ(z)

+
�

B(x,2A0C0δl)

∞∑
k=l

δk(γ−s)
k∑

j=l

δ−j(γ−s)
[ �

B(z,δj−2)

gj(y) dµ(y)
]q
dµ(z)

=: Y1 +Y2.

To estimate Y1, by the Hölder inequality with exponent q ∈ (1,∞), and
by (3.29), we find that, for any j ∈ Z and z ∈ X ,[ �

B(z,δj−2)

gj(y) dµ(y)
]q

≤
�

B(z,δj−2)

[gj(y)]
q dµ(y) ≲ ∥u∥q

Ṁs
∞,q(X )

.

From this, we further deduce that

Y1 ≲ ∥u∥q
Ṁs

∞,q(X )

�

B(x,2A0C0δl)

∞∑
k=l

δk(γ−s)
l−1∑

j=−∞
δ−j(γ−s) dµ(z) ≲ ∥u∥q

Ṁs
∞,q(X )

.

To estimate Y2, note that, for any j ∈ Z with j ≥ l, z ∈ B(x, 2A0C0δ
l), and

y ∈ B(z, δj−2), we have

d(y, x) ≤ A0[d(y, z) + d(z, x)] < A0δ
j−2 + 2A2

0C0δ
l

≤ (A0δ + 2A2
0C0δ

3)δl−3 ≤ δl−3,

which further implies that

Y2 ≲
�

B(x,2A0C0δl)

∞∑
k=l

δk(γ−s)
k∑

j=l

δ−j(γ−s)

×
[ �

B(z,δj−2)

gj(y)1B(x,δl−3)(y) dµ(y)
]q
dµ(z)

≲
�

B(x,2A0C0δl)

∞∑
k=l

δk(γ−s)
k∑

j=l

δ−j(γ−s)[M(gj1B(x,δl−3))(z)]
q dµ(z)

≲
∞∑
j=l

�

B(x,2A0C0δl)

[M(gj1B(x,δl−3))(z)]
q dµ(z)

≲
∞∑
j=l

�

B(x,2A0C0δl)

[gj(z)1B(x,δl−3)(z)]
q dµ(z)
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≲
∞∑

j=l−3

�

B(x,δl−3)

[gj(z)]
q dµ(z) ≲ ∥u∥q

Ṁs
∞,q(X )

.

Combining the estimates of both Y1 and Y2, we conclude that, for any l ∈ Z
and x ∈ X , �

B(x,2A0C0δl)

∞∑
k=l

δ−ksq sup
ϕ∈Fk(z)

|⟨u, ϕ⟩|q dµ(z) ≲ ∥u∥q
Ṁs

∞,q(X )
,

which, together with Lemma 2.4(iii), implies the desired estimate.

Case 5: p=∞ and q∈(ω/(ω+s), 1]. In this case, choose a {gk}k∈Z∈Ds(u)
as in Case 4. Arguing as in (3.28), we have, for any fixed ε, ε′∈(0, s)with ε<ε′,

�

B(x,2A0C0δl)

∞∑
k=l

δ−ksq sup
ϕ∈Fk(z)

|⟨u, ϕ⟩|q dµ(z)

≲
�

B(x,2A0C0δl)

∞∑
k=l

δ−ksq
∞∑
i=0

δiγqδ(k−i)ε′q

×
∞∑

j=k−i−2

δj(s−ε′)q
{ �

B(z,δk−i−1)

[gj(y)]
ω

ω+ε dµ(y)
} (ω+ε)q

ω
dµ(z)

∼
�

B(x,2A0C0δl)

∞∑
k=l

δ−ksq
k∑

m=−∞
δ(k−m)γqδmε′q

×
∞∑

j=m−2

δj(s−ε′)q
{ �

B(z,δm−1)

[gj(y)]
ω

ω+ε dµ(y)
} (ω+ε)q

ω
dµ(z)

≲
�

B(x,2A0C0δl)

∞∑
m=−∞

δ(l∨m)(γ−s)qδm(ε′−γ)q

×
∞∑

j=m−2

δj(s−ε′)q
{ �

B(z,δm−1)

[gj(y)]
ω

ω+ε dµ(y)
} (ω+ε)q

ω
dµ(z)

≲
�

B(x,2A0C0δl)

l∑
m=−∞

δl(γ−s)qδm(ε′−γ)q

×
∞∑

j=m−2

δj(s−ε′)q
{ �

B(z,δm−1)

[gj(y)]
ω

ω+ε dµ(y)
} (ω+ε)q

ω
dµ(z)

+
�

B(x,2A0C0δl)

∞∑
m=l+1

δm(ε′−s)q · · ·

=: Y3 +Y4.



36 R. Alvarado et al.

To estimate Y3, choosing an ε ∈ (0, s) such that ω/(ω+ s) < ω/(ω+ ε) < q,
and using the Hölder inequality and (3.29), we find that, for any m ∈ Z and
z ∈ X ,{ �

B(z,δm−1)

[gj(y)]
ω

ω+ε dµ(y)
} (ω+ε)q

ω ≤
�

B(z,δm−1)

[gj(y)]
q dµ(y) ≲ ∥u∥q

Ṁs
∞,q(X )

,

which implies that

Y3 ≲ ∥u∥q
Ṁs

∞,q(X )

l∑
m=−∞

δl(γ−s)qδm(ε′−γ)q
∞∑

j=m−2

δj(s−ε′)q ≲ ∥u∥q
Ṁs

∞,q(X )
.

To estimate Y4, we first observe that, for any m ∈ Z with m ≥ l + 1,
z ∈ B(x, 2A0C0δ

l), and y ∈ B(z, δm−1),

d(y, x) ≤ A0[d(y, z) + d(z, x)] < A0δ
m−2 + 2A2

0C0δ
l

≤ (A0δ + 2A2
0C0δ

2)δl−2 ≤ δl−2,

which further implies that

Y4 ≲
�

B(x,2A0C0δl)

∞∑
m=l+1

δm(ε′−s)q
∞∑

j=m−2

δj(s−ε′)q

×
{ �

B(z,δm−1)

[gj(y)1B(x,δl−2)(y)]
ω

ω+ε dµ(y)
} (ω+ε)q

ω
dµ(z)

≲
�

B(x,2A0C0δl)

∞∑
m=l+1

δm(ε′−s)q
∞∑

j=m−2

δj(s−ε′)q

×
{
M

(
[gj1B(x,δl−2)]

ω
ω+ε

)
(z)

} (ω+ε)q
ω dµ(z)

≲
�

B(x,2A0C0δl)

∞∑
j=l−1

{
M

(
[gj1B(x,δl−2)]

ω
ω+ε

)
(z)

} (ω+ε)q
ω dµ(z)

≲
∞∑

j=l−2

�

B(x,δl−2)

[gj(z)]
q dµ(z) ≲ ∥u∥q

Ṁs
∞,q(X )

.

Combining the estimates of both Y3 and Y4, we conclude that, for any l ∈ Z
and x ∈ X ,

�

B(x,2A0C0δl)

∞∑
k=l

δ−ksq sup
ϕ∈Fk(z)

|⟨u, ϕ⟩|q dµ(z) ≲ ∥u∥q
Ṁs

∞,q(X )
,

which, together with Lemma 2.4(iii), implies the desired estimate in this
case.

Thus, we have Ṁ s
p,q(X ) ⊂ AḞ s

p,q(X ).
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We finally show AḞ s
p,q(X ) ⊂ Ṁ s

p,q(X ). Assume that f ∈ AḞ s
p,q(X ). By

Lemma 3.19 and its proof, we conclude that there exist a subsequence
{Qkjf}j∈N and a constant C ∈ R such that, for almost every x ∈ X ,
limj→∞Qkjf(x) = f(x)− C. For any k ∈ Z and x ∈ X , let

gk(x) := δ−ks sup
ϕ∈Fk(x)

|⟨f, ϕ⟩|.

For almost all x, y ∈ X and k0 ∈ Z satisfying δk0+1 ≤ d(x, y) < δk0 , we find
a j0 ∈ N satisfying k0 ≤ kj0 and we then estimate

|f(x)− f(y)| = |f(x)−Qkj0
f(x)+Qkj0

f(x)−Qkj0
f(y)+Qkj0

f(y)−f(y)|

≤ |Qkj0
f(x)−Qkj0

f(y)|+
∞∑

j=j0

[
|Qkj+1

f(x)−Qkjf(x)|

+ |Qkj+1
f(x)−Qkjf(x)|

]
≤ δkj0s[gkj0 (x) + gkj0 (y)] +

∞∑
k=k0

[
|Qk+1f(x)−Qkf(x)|

+ |Qk+1f(x)−Qkf(x)|
]

≤ 2

∞∑
k=k0

δks[gk(x) + gk(y)].

For any k ∈ Z, define

hk := 2
∞∑
j=k

δ(−k+j−1)sgj .

We then have, for almost all x, y ∈ X with δk+1 ≤ d(x, y) < δk,

|f(x)− f(y)| ≤ 2
∞∑
j=k

δjs[gj(x) + gj(y)] ≤ δ(k+1)s[hk(x) + hk(y)]

≤ [d(x, y)]s[hk(x) + hk(y)],

which implies that {hk}k∈Z ∈ Ds(f). Note that, by the Hölder inequality
when q ∈ (1,∞], or (3.1) when q ∈ (ω/(ω + s), 1], we obtain

∞∑
k=−∞

hqk ≲
∞∑

k=−∞

[ ∞∑
j=k

δ(−k+j−1)sgj

]q
≲

∞∑
k=−∞

∞∑
j=k

δ(−k+j−1)sq/2gqj ≲
∞∑

j=−∞
gqj ,

which implies that, for any given p ∈ (ω/(ω+s),∞) and q ∈ (ω/(ω+s),∞],

∥f∥Ṁs
p,q(X ) ≤

∥∥∥( ∞∑
k=∞

hqk

)1/q∥∥∥
Lp(X )

≲
∥∥∥( ∞∑

j=∞
gqj

)1/q∥∥∥
Lp(X )

∼ ∥f∥AḞ s
p,q(X ).



38 R. Alvarado et al.

When p = ∞, by the Hölder inequality when q ∈ (1,∞], or (3.1) when
q ∈ (ω/(ω + s), 1), we have, for any l ∈ Z,

∞∑
k=l

hqk ≲
∞∑
k=l

[ ∞∑
j=k

δ(−k+j−1)sgj

]q
≲

∞∑
k=l

∞∑
j=k

δ(−k+j−1)sq/2gqj ≲
∞∑
j=l

gqj ,

which implies that, for any x ∈ X ,
∞∑
k=l

�

B(x,δl)

[hk(y)]
q dµ(y) ≲

∞∑
j=l

�

B(x,δl)

[gj(y)]
q dµ(y).

From this, we deduce that ∥f∥Ṁs
∞,q(X ) ≲ ∥f∥AḞ s

∞,q(X ), which completes the
proof of (i), and hence of Theorem 3.10.

Proof of Theorem 2.16. The theorem is a direct corollary of both Theo-
rems 3.3 and 3.10; we omit the details.

4. Pointwise characterization of inhomogeneous Besov and Trie-
bel–Lizorkin spaces. In this section, we establish the inhomogeneous ver-
sion of Theorem 2.16. Let us begin with the concept of inhomogeneous ap-
proximations of the identity with exponential decay (see [24, Definition 6.1]).

Definition 4.1. Let η ∈ (0, 1) be as in Definition 2.5. A sequence
{Qk}k∈Z+ of bounded linear integral operators on L2(X ) is called an inho-
mogeneous approximation of the identity with exponential decay (for short,
exp-IATI) if {Qk}k∈Z+ has the following properties:

(i)
∑∞

k=0Qk = I in L2(X );
(ii) for any k ∈ N, Qk satisfies (ii) through (v) of Definition 2.5;
(iii) Q0 satisfies (ii), (iii), and (iv) of Definition 2.5 with k = 0 but without

the decay factor

exp{−ν[max {d(x,Y0), d(y,Y0)}]a};

moreover, for any x ∈ X ,

(4.1)
�

X
Q0(x, y) dµ(y) = 1 =

�

X
Q0(y, x) dµ(y).

Remark 4.2. As was pointed out in [24, Remark 6.2], the existence of an
exp-IATI on X is guaranteed by the main results from [4]. In Definition 4.1,
due to (4.1), we do not need diamX = ∞ to guarantee the existence of an
exp-IATI on X . In other words, diamX can be finite or infinite.

Based on the concept of exp-IATIs, He et al. established the following
inhomogeneous discrete Calderón reproducing formulae in [24, Theorems
6.10 and 6.13].
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Lemma 4.3. Let {Qk}k∈Z+ be an exp-IATI and β, γ ∈ (0, η) with η as in
Definition 2.5. For any k ∈ Z+, α ∈ Ak, and m ∈ {1, . . . , N(k, α)}, suppose
that yk,mα is an arbitrary point in Qk,m

α . Then there exist an N ∈ N and a
sequence {Q̃k}k∈Z+ of bounded linear integral operators on L2(X ) such that,
for any f ∈ (Gη

0 (β, γ))
′,

f(·) =
∑
α∈A0

N(0,α)∑
m=1

�

Q0,m
α

Q̃0(·, y) dµ(y)Q0,m
α,1 (f)

+
N∑
k=1

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )Q̃k(·, yk,mα )Qk,m

α,1 (f)

+
∞∑

k=N+1

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )Q̃k(·, yk,mα )Qkf(y

k,m
α )

in (Gη
0 (β, γ))

′, where, for any k ∈ {0, . . . , N}, α ∈ Ak, m ∈ {1, . . . , N(k, α)},
and x ∈ X ,

Qk,m
α,1 (x) :=

1

µ(Qk,m
α )

�

Qk,m
α

Qk(y, x) dµ(y),

and Qk,m
α,1 (f) := ⟨f,Qk,m

α,1 ⟩. Moreover, for any k ∈ Z+, the kernel of Q̃k, still
denoted by Q̃k, satisfies (3.2), (3.3), and the following integral condition: for
any x ∈ X ,

�

X
Q̃k(x, y) dµ(y) =

�

X
Q̃k(y, x) dµ(y) =

{
1 if k ∈ {0, . . . , N},
0 if k ∈ {N + 1, N + 2, . . .}.

We now recall the concepts of inhomogeneous spaces Bs
p,q(X ) and F s

p,q(X )
introduced in [48]. To this end, for any dyadic cube Q and any non-negative
measurable function f on X , let

mQ(f) :=
1

µ(Q)

�

Q

f(y) dµ(y).

Definition 4.4. Let β, γ ∈ (0, η) with η as in Definition 2.5, and s ∈
(−(β∧γ), β∧γ). Let {Qk}k∈Z+ be an exp-IATI and N ∈ N as in Lemma 4.3.

(i) If p ∈ (p(s, β ∧ γ),∞] with p(s, β ∧ γ) as in (1.1), and q ∈ (0,∞], then
the inhomogeneous Besov space Bs

p,q(X ) is defined to be the set of all
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the f ∈ (Gη
0 (β, γ))

′ such that

∥f∥Bs
p,q(X ) :=

{ N∑
k=0

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )[m

Qk,m
α

(|Qkf |)]p
}1/p

+
[ ∞∑
k=N+1

δ−ksq∥Qkf∥qLp(X )

]1/q
<∞

with the usual modifications when p = ∞ or q = ∞.
(ii) If p ∈ (p(s, β ∧ γ),∞) and q ∈ (p(s, β ∧ γ),∞], then the inhomogeneous

Triebel–Lizorkin space F s
p,q(X ) is defined to be the set of all the f ∈

(Gη
0 (β, γ))

′ such that

∥f∥F s
p,q(X ) :=

{ N∑
k=0

∑
α∈Ak

N(k,α)∑
m=1

µ(Qk,m
α )[m

Qk,m
α

(|Qkf |)]p
}1/p

+
∥∥∥( ∞∑

k=N+1

δ−ksq|Qkf |q
)1/q∥∥∥

Lp(X )

<∞
with the usual modification when q = ∞.

Remark 4.5. (i) We point out that we do not need the assumption
µ(X ) = ∞ in Definitions 4.1 and 4.4.

(ii) It was proved in [48, Propositions 4.3 and 4.4] that, when β, γ, s, p,
and q are as in Definition 4.4, the inhomogeneous Besov and Triebel–Lizorkin
spaces are independent of the choices of both the exp-IATIs and the spaces
of distributions.

We next recall the concepts of 1-exp-IATIs (see, for instance, [26, Defini-
tion 3.1]) and the local Hardy space hp(X ) (see, for instance, [26, Section 3]).

Definition 4.6. Let η ∈ (0, 1) be as in Definition 2.5. A sequence
{Pk}k∈Z+ of bounded linear integral operators on L2(X ) is called an in-
homogeneous approximation of the identity with exponential decay and inte-
gration 1 (for short, 1-exp-IATI) if {Pk}k∈Z+ has the following properties:

(i) for any k ∈ Z+, Pk satisfies both (ii) and (iii) of Definition 2.5 but
without the term

exp
{
−ν[max {d(x,Yk), d(y,Yk)}]a

}
;

(ii) for any k ∈ Z+ and x ∈ X ,�

X
Pk(x, y) dµ(y) = 1 =

�

X
Pk(y, x) dµ(y);
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(iii) if Q0 := P0 and Qk := Pk − Pk−1 for any k ∈ N, then {Qk}k∈Z+ is an
exp-IATI.

Definition 4.7. Let X be a space of homogeneous type. Let {Pk}k∈Z
be a 1-exp-IATI. The local radial maximal function M+

0 (f) of f is defined
by setting, for any x ∈ X ,

M+
0 (f)(x) := max

{
max

k∈{0,...,N}

{ ∑
α∈Ak

N(k,α)∑
m=1

sup
z∈Qk,m

α

|Pkf(z)|1Qk,m
α

(x)
}
,

sup
k∈{N+1,N+2,...}

|Pkf(x)|
}
,

where N ∈ N is as in Lemma 4.3. For any p ∈ (0,∞), the local Hardy space
hp(X ) is defined by setting

hp(X ) := {f ∈ (Gη
0 (β, γ))

′ : ∥f∥hp(X ) := ∥M+
0 (f)∥Lp(X ) <∞}.

Remark 4.8. In [26, Theorem 3.3], it was shown that, when p ∈ (1,∞],
then hp(X ) = Lp(X ). Also, in [48, Theorem 6.13], it was proved that,
when p ∈ (1,∞), F 0

p,2 = Lp(X ). Moreover, the Littlewood–Paley g-function
characterization of hp(X ) in [26, Theorem 5.7] implies that, for any given
p ∈ (ω/(ω + η), 1], F 0

p,2(X ) = hp(X ).

Now,we introduce the concepts of inhomogeneousHajłasz–Sobolev spaces,
Hajłasz–Triebel–Lizorkin spaces, and Hajłasz–Besov spaces.

Definition 4.9. Let s ∈ (0,∞).

(i) Let p ∈ (0,∞). The inhomogeneous Hajłasz–Sobolev space M s,p(X ) is
defined to be the set of all the measurable functions u on X such that

∥u∥Ms,p(X ) := ∥u∥hp(X ) + ∥u∥Ṁs,p(X ) <∞.

(ii) Let p, q ∈ (0,∞]. The inhomogeneous Hajłasz–Triebel–Lizorkin space
M s

p,q(X ) is defined to be the set of all the measurable functions u on X
such that

∥u∥Ṁs
p,q(X ) := ∥u∥hp(X ) + ∥u∥Ṁs

p,q(X ) <∞.

(iii) Let p, q ∈ (0,∞]. The inhomogeneous Hajłasz–Besov space N s
p,q(X ) is

defined to be the set of all the measurable functions u on X such that

∥u∥Ns
p,q(X ) := ∥u∥hp(X ) + ∥u∥Ṅs

p,q(X ) <∞.

The following statement is the inhomogeneous version of Theorem 2.16.

Theorem 4.10. Let ω and η be, respectively, as in (2.2) and Defini-
tion 2.5, β, γ ∈ (0, η), s ∈ (0, β∧γ), and p, q be as in Definition 4.4. Assume
that µ(X ) = ∞ and the measure µ of X has a weak lower bound Q = ω.
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(i) If p ∈ (ω/(ω + s),∞) and q ∈ (ω/(ω + s),∞], then M s
p,q(X ) = F s

p,q(X ).
(ii) If p ∈ (ω/(ω + s),∞] and q ∈ (0,∞], then N s

p,q(X ) = Bs
p,q(X ).

To prove Theorem 4.10, we first establish a relation between local Hardy
spaces and inhomogeneous Besov and Triebel–Lizorkin spaces, whose RD-
space version was obtained in [60, Theorem 1.2]. We point out that the
proof of [60, Theorem 1.2] just depends on the size, the regularity, and the
cancellation conditions of the approximation of the identity (for short, ATI),
but does not involve the reverse doubling condition of the underlying space
and the bounded support of ATI. As a result, the proof of [60, Theorem 1.2]
is still valid in any space of homogeneous type due to Definition 2.5(v) and
Lemma 2.6; we omit the details.

Theorem 4.11. Let β, γ ∈ (0, η) with η as in Definition 2.5, s ∈ (0, β∧γ),
and p ∈ (ω/(ω+ s),∞) with ω as in (2.2). Assume µ(X ) = ∞. Let {Qk}k∈Z
be an exp-ATI.

(i) If q ∈ (0,∞], then f ∈ Bs
p,q(X ) if and only if f ∈ hp(X ) and

J1 :=
[ ∞∑
k=−∞

δ−ksq∥Qkf∥qLp(X)

]1/q
<∞.

Moreover, ∥f∥Bs
p,q(X ) is equivalent to ∥f∥hp(X ) + J1 with positive equiv-

alence constants independent of f .
(ii) If q ∈ (ω/(ω + s),∞], then f ∈ F s

p,q(X ) if and only if f ∈ hp(X ) and

J2 :=
∥∥∥( ∞∑

k=−∞
δ−ksq|Qkf |q

)1/q∥∥∥
Lp(X)

<∞.

Moreover, ∥f∥F s
p,q(X ) is equivalent to ∥f∥hp(X ) +J2 with positive equiva-

lence constants independent of f .

Remark 4.12. Usually, it makes no sense to write the conclusions of
Theorem 4.11 as Bs

p,q(X ) = hp(X )∩ Ḃs
p,q(X ) and F s

p,q(X ) = hp(X )∩ Ḟ s
p,q(X )

because homogeneous and inhomogeneous spaces are defined via different
kinds of spaces of distributions (see [60, Remark 1.1(iv)]).

Proof of Theorem 4.10. We only prove (i) because the proof of (ii) is
similar. We first show M s

p,q(X ) ⊂ F s
p,q(X ). To this end, assume u ∈M s

p,q(X ).
By Definition 4.9, we know that u ∈ hp(X ) and u ∈ Ṁ s

p,q(X ). We then
consider two cases of p.

Case 1: p ∈ (1,∞). In this case, since p ∈ (1,∞), from [26, Theo-
rem 3.3], it follows that u ∈ Lp(X ). Moreover, by Theorem 2.16, we find that
u ∈ Ḟ s

p,q(X ). These, together with [48, Theorem 6.12], imply that u ∈ F s
p,q(X )

and ∥u∥F s
p,q(X ) ≲ ∥u∥Ms

p,q(X ).
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Case 2: p ∈ (ω/(ω+ s), 1]. In this case, by Theorem 2.16, we know that
u ∈ Ḟ s

p,q(X ) and ∥u∥Ḟ s
p,q(X ) ≲ ∥u∥Ṁs

p,q(X ). Then, using Theorem 4.11(ii), we
conclude that u ∈ F s

p,q(X ) and ∥u∥F s
p,q(X ) ≲ ∥u∥Ms

p,q(X ).

Next, we show F s
p,q(X ) ⊂M s

p,q(X ). To this end, assume that u ∈ F s
p,q(X ).

As above, we consider two cases of p.

Case 1: p ∈ (1,∞). In this case, from [48, Theorem 6.12], it follows that
u ∈ Lp(X ) ∩ Ḟ s

p,q(X ) and

∥u∥F s
p,q(X ) ∼ ∥u∥Lp(X ) + ∥u∥Ḟ s

p,q(X ).

By [26, Theorem 3.3] again, we conclude that u ∈ hp(X ) and ∥u∥hp(X ) ∼
∥u∥Lp(X ). Moreover, from Theorem 2.16, we infer that u ∈ Ṁ s

p,q(X ) and
∥u∥Ṁs

p,q(X ) ∼ ∥u∥Ḟ s
p,q(X ), which further implies that u ∈M s

p,q(X ) and

∥u∥Ms
p,q(X ) ≲ ∥u∥F s

p,q(X ).

Case 2: p ∈ (ω/(ω + s), 1]. In this case, since u ∈ F s
p,q(X ), from [48,

Proposition 4.4], it follows that u ∈ (Gη
0 (β, γ))

′ with β and γ as in Defi-
nition 4.4. As p ∈ (ω/(ω + s), 1], we know that s > ω(1/p − 1). Choos-
ing a β0 ∈ (0, η) and a γ0 ∈ (s, η) ⊂ (ω[1/p − 1], η), we then find a
u ∈ (Gη

0 (β0, γ0))
′ ⊂ (G̊η

0 (β0, γ0))
′. From this, Theorem 4.11(ii), and [48,

Proposition 3.15], we deduce that u ∈ Ḟ s
p,q(X ) and

∥u∥F s
p,q(X ) ∼ ∥u∥Lp(X ) + ∥u∥Ḟ s

p,q(X ),

which implies that u ∈M s
p,q(X ) and ∥u∥Ms

p,q(X ) ≲ ∥u∥F s
p,q(X ).

This finishes the proof of (i), and hence of Theorem 4.10.

Remark 4.13. We point out that it is not clear whether or not Theo-
rem 4.10 still holds true when µ(X ) ̸= ∞, because the existence of exp-ATIs
in Theorem 4.11 needs µ(X ) = ∞ [see Remark 2.9(i)].
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